EMERGING PHARMACOLOGICAL STRATEGIES IN ALZHEIMER'S DISEASE: A REVIEW OF NOVEL THERAPEUTIC TARGETS AND DRUG INNOVATIONS

Keywords: Alzheimer’s Disease, Aducanumab, Lecanemab, Donanemab, Monoclonal Antibodies

Abstract

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder worldwide and constitutes a significant public health concern due to its rising incidence and the absence of curative therapies. This review synthesizes recent pharmacological progress in the treatment of AD, with particular emphasis on emerging therapeutic strategies and investigational drug classes. The analysis draws on clinical trial data, regulatory documents, and peer-reviewed literature published between 2017 and 2025, identified through major scientific databases including PubMed, Scopus, and ClinicalTrials.gov. The most promising advances are associated with monoclonal antibodies directed against amyloid-beta pathology, such as aducanumab, lecanemab, and donanemab, which show potential to modify disease progression but also raise concerns related to efficacy, safety, and regulatory approval. Additional innovative approaches, including tau-targeted therapies, gene editing technologies such as CRISPR-Cas9, and RNA interference (RNAi), present new therapeutic opportunities, though they remain limited by challenges such as amyloid-related imaging abnormalities (ARIA), restricted delivery across the blood–brain barrier, and uncertainties regarding long-term clinical outcomes. While currently available pharmacological options are insufficient to halt or reverse AD, recent advancements, particularly in antibody-based therapies, represent an important step toward a new therapeutic era. Nevertheless, cautious interpretation of preliminary findings and rigorous clinical validation remain essential before these strategies can be translated into widespread clinical practice.

References

Nichols, E., Steinmetz, J. D., Vollset, S. E., Fukutaki, K., Chalek, J., Abd-Allah, F., Abdoli, A., Abualhasan, A., Abu-Gharbieh, E., Akram, T. T., Al Hamad, H., Alahdab, F., Alanezi, F. M., Alipour, V., Almustanyir, S., Amu, H., Ansari, I., Arabloo, J., Ashraf, T., ... Vos, T. (2022). Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. The Lancet Public Health, 7(2), Artykuł e105-e125. https://doi.org/10.1016/s2468-2667(21)00249-8

World Health Organization (WHO). (2025). Dementia. https://www.who.int/news-room/fact-sheets/detail/dementia

2024 Alzheimer's disease facts and figures. (2024). Alzheimer's & dementia : the journal of the Alzheimer's Association, 20(5), 3708–3821. https://doi.org/10.1002/alz.13809

Meyer, O. L., Zheng, S., Alto, R., Tran, D., Luu, S., Vu, U., Hinton, L., & Harvey, D. (2024). Caregivers of People With Mild Cognitive Impairment and Dementia: Characterizing Social and Psychological Outcomes. Alzheimer disease and associated disorders, 38(1), 51–58. https://doi.org/10.1097/WAD.0000000000000603

Knight, R., Khondoker, M., Magill, N., Stewart, R., & Landau, S. (2018). A Systematic Review and Meta-Analysis of the Effectiveness of Acetylcholinesterase Inhibitors and Memantine in Treating the Cognitive Symptoms of Dementia. Dementia and geriatric cognitive disorders, 45(3-4), 131–151. https://doi.org/10.1159/000486546

Chin, E., Jaqua, E., Safaeipour, M., & Ladue, T. (2022). Conventional Versus New Treatment: Comparing the Effects of Acetylcholinesterase Inhibitors and N-Methyl-D-Aspartate Receptor Antagonist With Aducanumab. Cureus, 14(11), e31065. https://doi.org/10.7759/cureus.31065

Glinz, D., Gloy, V. L., Monsch, A. U., Kressig, R. W., Patel, C., McCord, K. A., Ademi, Z., Tomonaga, Y., Schwenkglenks, M., Bucher, H. C., & Raatz, H. (2019). Acetylcholinesterase inhibitors combined with memantine for moderate to severe Alzheimer's disease: a meta-analysis. Swiss medical weekly, 149, w20093. https://doi.org/10.4414/smw.2019.20093

van Dyck, C. H., Swanson, C. J., Aisen, P., Bateman, R. J., Chen, C., Gee, M., Kanekiyo, M., Li, D., Reyderman, L., Cohen, S., Froelich, L., Katayama, S., Sabbagh, M., Vellas, B., Watson, D., Dhadda, S., Irizarry, M., Kramer, L. D., & Iwatsubo, T. (2023). Lecanemab in Early Alzheimer's Disease. The New England journal of medicine, 388(1), 9–21. https://doi.org/10.1056/NEJMoa2212948

McDade, E., Cummings, J. L., Dhadda, S., Swanson, C. J., Reyderman, L., Kanekiyo, M., Koyama, A., Irizarry, M., Kramer, L. D., & Bateman, R. J. (2022). Lecanemab in patients with early Alzheimer's disease: detailed results on biomarker, cognitive, and clinical effects from the randomized and open-label extension of the phase 2 proof-of-concept study. Alzheimer's research & therapy, 14(1), 191. https://doi.org/10.1186/s13195-022-01124-2

Park, A. (2023, 6 stycznia). FDA Approves Lecanemab, a New Alzheimer’s Drug. TIME. https://time.com/6244798/fda-approves-lecanemab-alzheimers-drug/

Kim, B.-H., Kim, S., Nam, Y., Park, Y. H., Shin, S. M., & Moon, M. (2025). Second-generation anti-amyloid monoclonal antibodies for Alzheimer’s disease: current landscape and future perspectives. Translational Neurodegeneration, 14(1). https://doi.org/10.1186/s40035-025-00465-w

Kim, A. Y., Al Jerdi, S., MacDonald, R., & Triggle, C. R. (2024). Alzheimer's disease and its treatment-yesterday, today, and tomorrow. Frontiers in pharmacology, 15, 1399121. https://doi.org/10.3389/fphar.2024.1399121

Budd Haeberlein, S., Aisen, P. S., Barkhof, F., Chalkias, S., Chen, T., Cohen, S., Dent, G., Hansson, O., Harrison, K., von Hehn, C., Iwatsubo, T., Mallinckrodt, C., Mummery, C. J., Muralidharan, K. K., Nestorov, I., Nisenbaum, L., Rajagovindan, R., Skordos, L., Tian, Y., van Dyck, C. H., … Sandrock, A. (2022). Two Randomized Phase 3 Studies of Aducanumab in Early Alzheimer's Disease. The journal of prevention of Alzheimer's disease, 9(2), 197–210. https://doi.org/10.14283/jpad.2022.30

Rahman, A., Hossen, M. A., Chowdhury, M. F. I., Bari, S., Tamanna, N., Sultana, S. S., Haque, S. N., Al Masud, A., & Saif-Ur-Rahman, K. M. (2023). Aducanumab for the treatment of Alzheimer's disease: a systematic review. Psychogeriatrics : the official journal of the Japanese Psychogeriatric Society, 23(3), 512–522. https://doi.org/10.1111/psyg.12944

Nisticò, R., & Borg, J. J. (2021). Aducanumab for Alzheimer's disease: A regulatory perspective. Pharmacological research, 171, 105754. https://doi.org/10.1016/j.phrs.2021.105754

Alexander, G. C., Emerson, S., & Kesselheim, A. S. (2021). Evaluation of Aducanumab for Alzheimer Disease: Scientific Evidence and Regulatory Review Involving Efficacy, Safety, and Futility. JAMA, 325(17), 1717–1718. https://doi.org/10.1001/jama.2021.3854

Sharma, A., Rudrawar, S., Bharate, S. B., & Jadhav, H. R. (2025). Recent advancements in the therapeutic approaches for Alzheimer's disease treatment: Current and future perspective. RSC Medicinal Chemistry. https://doi.org/10.1039/d4md00630e

Chhabra, A., Solanki, S., Saravanabawan, P., Venkiteswaran, A., Nimmathota, N., & Modi, N. M. (2024). A systematic review of the efficacy and safety of anti-amyloid beta monoclonal antibodies in treatment of Alzheimer's disease. Expert opinion on biological therapy, 24(11), 1261–1269. https://doi.org/10.1080/14712598.2024.2416947

Wu, W., Ji, Y., Wang, Z., Wu, X., Li, J., Gu, F., Chen, Z., & Wang, Z. (2023). The FDA-approved anti-amyloid-β monoclonal antibodies for the treatment of Alzheimer's disease: a systematic review and meta-analysis of randomized controlled trials. European journal of medical research, 28(1), 544. https://doi.org/10.1186/s40001-023-01512-w

Sims, J. R., Zimmer, J. A., Evans, C. D., Lu, M., Ardayfio, P., Sparks, J., Wessels, A. M., Shcherbinin, S., Wang, H., Monkul Nery, E. S., Collins, E. C., Solomon, P., Salloway, S., Apostolova, L. G., Hansson, O., Ritchie, C., Brooks, D. A., Mintun, M., Skovronsky, D. M., ... Zboch, M. (2023). Donanemab in Early Symptomatic Alzheimer Disease. JAMA. https://doi.org/10.1001/jama.2023.13239

Abdul Manap, A. S., Almadodi, R., Sultana, S., Sebastian, M. G., Kavani, K. S., Lyenouq, V. E., & Shankar, A. (2024). Alzheimer’s disease: a review on the current trends of the effective diagnosis and therapeutics. Frontiers in Aging Neuroscience, 16. https://doi.org/10.3389/fnagi.2024.1429211

Barakos, J., Purcell, D., Suhy, J., Chalkias, S., Burkett, P., Marsica Grassi, C., Castrillo-Viguera, C., Rubino, I., & Vijverberg, E. (2022). Detection and Management of Amyloid-Related Imaging Abnormalities in Patients with Alzheimer's Disease Treated with Anti-Amyloid Beta Therapy. The journal of prevention of Alzheimer's disease, 9(2), 211–220. https://doi.org/10.14283/jpad.2022.21

Guo, Y., Li, S., Zeng, L.-H., & Tan, J. (2022). Tau-targeting therapy in Alzheimer’s disease: critical advances and future opportunities. Ageing and Neurodegenerative Diseases, 2(3), 11. https://doi.org/10.20517/and.2022.16

Xia, Y., Prokop, S., & Giasson, B. I. (2021). “Don’t Phos Over Tau”: recent developments in clinical biomarkers and therapies targeting tau phosphorylation in Alzheimer’s disease and other tauopathies. Molecular Neurodegeneration, 16(1). https://doi.org/10.1186/s13024-021-00460-5

Swartz, T. (2024, 3 października). ‘One-of-a-kind’ new Alzheimer’s drug shows promise: ‘An exciting development’. New York Post. https://nypost.com/2024/10/03/health/one-of-a-kind-new-alzheimers-drug-ri-ag03-shows-promise/

Asceneuron halts Alzheimer’s trial adding to tau-targeting setbacks - Pharmaceutical Technology. (b. d.). Pharmaceutical Technology. https://www.pharmaceutical-technology.com/news/asceneuron-halts-alzheimers-trial-adding-to-tau-targeting-setbacks/

Kielbasa, W., Goldsmith, P., Donnelly, K. B., Nuthall, H. N., Shcherbinin, S., Fleisher, A. S., Hendle, J., DuBois, S. L., Lowe, S. L., Zhang, F. F., Woerly, E. M., Dreyfus, N. J., Evans, D., Gilmore, J., Mancini, M., Constantinescu, C. C., Gunn, R. N., Russell, D. S., Collins, E. C., Brys, M., … Mergott, D. J. (2024). Discovery and clinical translation of ceperognastat, an O-GlcNAcase (OGA) inhibitor, for the treatment of Alzheimer's disease. Alzheimer's & dementia (New York, N. Y.), 10(4), e70020. https://doi.org/10.1002/trc2.70020

Chen, Y., & Yu, Y. (2023). Tau and neuroinflammation in Alzheimer's disease: interplay mechanisms and clinical translation. Journal of neuroinflammation, 20(1), 165. https://doi.org/10.1186/s12974-023-02853-3

Chen, H., Xu, J., Xu, H., Luo, T., Li, Y., Jiang, K., Shentu, Y., & Tong, Z. (2023). New Insights into Alzheimer's Disease: Novel Pathogenesis, Drug Target and Delivery. Pharmaceutics, 15(4), 1133. https://doi.org/10.3390/pharmaceutics15041133

Park, A. (2025, 31 marca). An Alzheimer’s Blood Test Might Predict Advanced Disease. TIME. https://time.com/7273006/alzheimers-disease-blood-test-tau/

Zheng, Y., Zhang, X., Zhang, R., Wang, Z., Gan, J., Gao, Q., Yang, L., Xu, P., & Jiang, X. (2023). Inflammatory signaling pathways in the treatment of Alzheimer's disease with inhibitors, natural products and metabolites (Review). International journal of molecular medicine, 52(5), 111. https://doi.org/10.3892/ijmm.2023.5314

Chu, J., Zhang, W., Liu, Y., Gong, B., Ji, W., Yin, T., Gao, C., Liangwen, D., Hao, M., Chen, C., Zhuang, J., Gao, J., & Yin, Y. (2024). Biomaterials-based anti-inflammatory treatment strategies for Alzheimer's disease. Neural regeneration research, 19(1), 100–115. https://doi.org/10.4103/1673-5374.374137

Conti Filho, C. E., Loss, L. B., Marcolongo-Pereira, C., Rossoni Junior, J. V., Barcelos, R. M., Chiarelli-Neto, O., da Silva, B. S., Passamani Ambrosio, R., Castro, F. C. A. Q., Teixeira, S. F., & Mezzomo, N. J. (2023). Advances in Alzheimer's disease's pharmacological treatment. Frontiers in pharmacology, 14, 1101452. https://doi.org/10.3389/fphar.2023.1101452

Twarowski, B., & Herbet, M. (2023). Inflammatory Processes in Alzheimer's Disease-Pathomechanism, Diagnosis and Treatment: A Review. International journal of molecular sciences, 24(7), 6518. https://doi.org/10.3390/ijms24076518

Pappolla, M. A., Martins, R. N., Poeggeler, B., Omar, R. A., & Perry, G. (2024). Oxidative Stress in Alzheimer's Disease: The Shortcomings of Antioxidant Therapies. Journal of Alzheimer's disease : JAD, 101(s1), S155–S178. https://doi.org/10.3233/JAD-240659

Robson, D. (2024, 25 lutego). Is the 100-year old TB vaccine a new weapon against Alzheimer’s? the Guardian. https://www.theguardian.com/society/2024/feb/25/is-the-100-year-old-tb-vaccine-a-new-secret-weapon-against-alzheimers-dementia-bcg

Weinstock M. (2024). Therapeutic agents for Alzheimer's disease: a critical appraisal. Frontiers in aging neuroscience, 16, 1484615. https://doi.org/10.3389/fnagi.2024.1484615

Dong, N., Ali-Khiavi, P., Ghavamikia, N., Pakmehr, S., Sotoudegan, F., Hjazi, A., Gargari, M. K., Gargari, H. K., Behnamrad, P., Rajabi, M., Elhami, A., Saffarfar, H., & Nourizadeh, M. (2025). Nanomedicine in the treatment of Alzheimer's disease: bypassing the blood-brain barrier with cutting-edge nanotechnology. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 46(4), 1489–1507. https://doi.org/10.1007/s10072-024-07871-4

Pathak, K., Ahmad, M. Z., Saikia, R., Pathak, M. P., Sahariah, J. J., Kalita, P., Das, A., Islam, M. A., Pramanik, P., Tayeng, D., & Abdel-Wahab, B. A. (2025). Nanomedicine: A New Frontier in Alzheimer's Disease Drug Targeting. Central nervous system agents in medicinal chemistry, 25(1), 3–19. https://doi.org/10.2174/0118715249281331240325042642

Panghal, A., & Flora, S. J. S. (2024). Nanotechnology in the diagnostic and therapy for Alzheimer's disease. Biochimica et biophysica acta. General subjects, 1868(3), 130559. https://doi.org/10.1016/j.bbagen.2024.130559

Altinoglu, G., & Adali, T. (2020). Alzheimer's Disease Targeted Nano-Based Drug Delivery Systems. Current drug targets, 21(7), 628–646. https://doi.org/10.2174/1389450120666191118123151

Li, L., Zhang, J., Huang, X., Du, J., Tu, Z., Wu, H., Liu, X., & Yuan, M. (2023). Research Progress of Nanocarriers for the Treatment of Alzheimer's Disease. Current pharmaceutical design, 29(2), 95–115. https://doi.org/10.2174/1381612829666221216114912

Martín-Rapun, R., De Matteis, L., Ambrosone, A., Garcia-Embid, S., Gutierrez, L., & de la Fuente, J. M. (2017). Targeted Nanoparticles for the Treatment of Alzheimer's Disease. Current pharmaceutical design, 23(13), 1927–1952. https://doi.org/10.2174/1381612822666161226151011

Cummings, J., Lee, G., Nahed, P., Kambar, M. E. Z. N., Zhong, K., Fonseca, J., & Taghva, K. (2022). Alzheimer's disease drug development pipeline: 2022. Alzheimer's & dementia (New York, N. Y.), 8(1), e12295. https://doi.org/10.1002/trc2.12295

Barman, N. C., Khan, N. M., Islam, M., Nain, Z., Roy, R. K., Haque, A., & Barman, S. K. (2020). CRISPR-Cas9: A Promising Genome Editing Therapeutic Tool for Alzheimer's Disease-A Narrative Review. Neurology and therapy, 9(2), 419–434. https://doi.org/10.1007/s40120-020-00218-z

Tripathi, S., Sharma, Y., Rane, R., & Kumar, D. (2024). CRISPR/Cas9 Gene Editing: A Novel Approach Towards Alzheimer's Disease Treatment. CNS & neurological disorders drug targets, 23(12), 1405–1424. https://doi.org/10.2174/0118715273283786240408034408

Bhardwaj, S., Kesari, K. K., Rachamalla, M., Mani, S., Ashraf, G. M., Jha, S. K., Kumar, P., Ambasta, R. K., Dureja, H., Devkota, H. P., Gupta, G., Chellappan, D. K., Singh, S. K., Dua, K., Ruokolainen, J., Kamal, M. A., Ojha, S., & Jha, N. K. (2022). CRISPR/Cas9 gene editing: New hope for Alzheimer's disease therapeutics. Journal of advanced research, 40, 207–221. https://doi.org/10.1016/j.jare.2021.07.001

Bougea, A., & Gourzis, P. (2024). Biomarker-Based Precision Therapy for Alzheimer's Disease: Multidimensional Evidence Leading a New Breakthrough in Personalized Medicine. Journal of clinical medicine, 13(16), 4661. https://doi.org/10.3390/jcm13164661

Wigle, R. (2024). Accuracy of blood tests for Alzheimer's disease varies: study. New York Post. https://nypost.com/2024/07/30/health/accuracy-of-blood-tests-for-alzheimers-disease-varies-study/

Bahado-Singh, R. O., Vishweswaraiah, S., Turkoglu, O., Graham, S. F., & Radhakrishna, U. (2023). Alzheimer's Precision Neurology: Epigenetics of Cytochrome P450 Genes in Circulating Cell-Free DNA for Disease Prediction and Mechanism. International journal of molecular sciences, 24(3), 2876. https://doi.org/10.3390/ijms24032876

Kale, M., Wankhede, N., Pawar, R., Ballal, S., Kumawat, R., Goswami, M., Khalid, M., Taksande, B., Upaganlawar, A., Umekar, M., Kopalli, S. R., & Koppula, S. (2024). AI-driven innovations in Alzheimer's disease: Integrating early diagnosis, personalized treatment, and prognostic modelling. Ageing research reviews, 101, 102497. https://doi.org/10.1016/j.arr.2024.102497

Zhou, X., Chen, Y., Ip, F. C. F., Jiang, Y., Cao, H., Lv, G., Zhong, H., Chen, J., Ye, T., Chen, Y., Zhang, Y., Ma, S., Lo, R. M. N., Tong, E. P. S., Alzheimer’s Disease Neuroimaging Initiative, Mok, V. C. T., Kwok, T. C. Y., Guo, Q., Mok, K. Y., Shoai, M., … Ip, N. Y. (2023). Deep learning-based polygenic risk analysis for Alzheimer's disease prediction. Communications medicine, 3(1), 49. https://doi.org/10.1038/s43856-023-00269-x

Park, A. (2024, 7 czerwca). Changing Your Diet and Lifestyle May Slow Down Alzheimer's. TIME. https://time.com/6986373/how-to-slow-alzheimers-lifestyle/

Arora, S., Santiago, J. A., Bernstein, M., & Potashkin, J. A. (2023). Diet and lifestyle impact the development and progression of Alzheimer's dementia. Frontiers in nutrition, 10, 1213223. https://doi.org/10.3389/fnut.2023.1213223

Views:

182

Downloads:

118

Published
2025-09-09
Citations
How to Cite
Julia Szczotka, Gabriela Szpila, Remigiusz Flakus, Żaneta Kania, Gabriela Kapłon, Weronika Perczyńska, Anna Kamieniak, Dominika Gieroba, Artur Tumiński, Marianna Chmiel, Aleksandra Sokół, & Karolina Glajcar. (2025). EMERGING PHARMACOLOGICAL STRATEGIES IN ALZHEIMER’S DISEASE: A REVIEW OF NOVEL THERAPEUTIC TARGETS AND DRUG INNOVATIONS. International Journal of Innovative Technologies in Social Science, 1(3(47). https://doi.org/10.31435/ijitss.3(47).2025.3733

Most read articles by the same author(s)