EXERCISE-INDUCED ANAPHYLAXIS: CURRENT INSIGHTS FROM THE LITERATURE

Keywords: Exercise-Induced Anaphylaxis, Food-Dependent Exercise-Induced Anaphylaxis, Ω-5 Gliadin, Cofactors, Omalizumab, Bruton’s Tyrosine Kinase Inhibitors, Molecular Allergology

Abstract

Background: Exercise-induced anaphylaxis (EIA) is an uncommon but potentially life-threatening disorder triggered by physical activity. Its food-dependent form (FDEIA), most frequently associated with wheat and ω-5 gliadin, is the most prevalent subtype. Despite increasing recognition, both EIA and FDEIA remain underdiagnosed due to their heterogeneous presentations and multifactorial pathogenesis.

Methods: A narrative literature review was conducted, focusing on publications from 2023–2025 retrieved through PubMed, Scopus, and Google Scholar. Emphasis was placed on recent clinical trials, case reports, and mechanistic studies addressing epidemiology, diagnosis, and management.

Results: Recent evidence highlights the interplay between allergens, exercise, and cofactors such as nonsteroidal anti-inflammatory drugs, alcohol, and infections in lowering the threshold for reactions. While wheat and ω-5 gliadin remain the dominant triggers in FDEIA, newly described allergens, including banana, shellfish, and soy, broaden the clinical spectrum. Advances in molecular allergology, particularly component-resolved diagnostics, enhance sensitivity in identifying culprit allergens, although accessibility remains limited. Management continues to rely on trigger avoidance and the availability of self-injectable epinephrine. Promising developments include hypoallergenic wheat formulations, biologics such as omalizumab, and experimental approaches targeting mast cell signaling, notably Bruton’s tyrosine kinase inhibitors.

Conclusion: EIA and FDEIA are clinically significant disorders with diverse presentations and considerable diagnostic challenges. Progress in molecular diagnostics and biologic therapies suggests a shift toward proactive, disease-modifying strategies. Future priorities include standardized diagnostic protocols, validation of emerging therapies, and enhanced clinical awareness to improve patient safety and quality of life.

References

Ansley, L., Bonini, M., Delgado, L., Del Giacco, S., Du Toit, G., Khaitov, M., Kurowski, M., Hull, J. H., Moreira, A., & Robson-Ansley, P. J. (2015). Pathophysiological mechanisms of exercise-induced anaphylaxis: an EAACI position statement. Allergy, 70(10), 1212-1221. https://doi.org/10.1111/all.12677

Asaumi, T., Yanagida, N., Sato, S., Shukuya, A., Nishino, M., & Ebisawa, M. (2016). Provocation tests for the diagnosis of food-dependent exercise-induced anaphylaxis. Pediatr Allergy Immunol, 27(1), 44-49. https://doi.org/10.1111/pai.12489

Benito-Garcia, F., Ansotegui, I. J., & Morais-Almeida, M. (2019). Diagnosis and prevention of food-dependent exercise-induced anaphylaxis. Expert Rev Clin Immunol, 15(8), 849-856. https://doi.org/10.1080/1744666x.2019.1642747

Bennett, J. R. (2015). Anaphylaxis attributed to exercise: considerations for sports medicine specialists. Phys Sportsmed, 43(1), 1-12. https://doi.org/10.1080/00913847.2015.1000233

Callisto, A., Perkins, G. B., Troelnikov, A., Mhatre, S., Hissaria, P., & Smith, W. (2024). Prevention of exercise-induced anaphylaxis by ibrutinib. J Allergy Clin Immunol Pract, 12(9), 2503-2505.e2502. https://doi.org/10.1016/j.jaip.2024.05.036

Carlisle, A., & Lieberman, J. A. (2024). Getting in Shape: Updates in Exercise Anaphylaxis. Curr Allergy Asthma Rep, 24(11), 631-638. https://doi.org/10.1007/s11882-024-01176-4

Kampitak, T. (2023). Preprandial food-dependent exercise-induced anaphylaxis to banana. Asia Pac Allergy, 13(4), 199-200. https://doi.org/10.5415/apallergy.0000000000000113

Kohno, K., Chinuki, Y., Sugiyama, A., Kishikawa, R., Okamoto, M., Hide, M., Oda, Y., Fukunaga, A., Suzuki, R., & Morita, E. (2025). Phase II multicenter clinical trial of hypoallergenic 1BS-18 Hokushin bread oral immunotherapy for wheat-dependent exercise-induced anaphylaxis. Asia Pac Allergy, 15(2), 67-73. https://doi.org/10.5415/apallergy.0000000000000180

Landgraf, S. (2025). Allergic to Exercise: A Case of Exercise-Induced Anaphylaxis. Curr Sports Med Rep, 24(4), 83-84. https://doi.org/10.1249/jsr.0000000000001239

Le Bon Chami, B., Charif, F., El Zoghbi, S., Challita, S., & Zaitoun, F. (2025). Omega-5-Gliadin Allergy and Cofactors Leading to Anaphylaxis: A Case Report. Cureus, 17(3), e81529. https://doi.org/10.7759/cureus.81529

Miyamoto, M., Maruyama, N., & Yoshihara, S. (2025). Component-resolved diagnostics in pediatric wheat-dependent exercise-induced anaphylaxis: A case report. Allergol Immunopathol (Madr), 53(4), 138-140. https://doi.org/10.15586/aei.v53i4.1316

Mobayed, H., Al-Nesf, M. A., Robles-Velasco, K., Cherrez-Ojeda, I., Ensina, L. F., & Maurer, M. (2023). Severe exercise-induced anaphylaxis in a hot and humid area successfully treated with omalizumab: a case report. Front Allergy, 4, 1228495. https://doi.org/10.3389/falgy.2023.1228495

Özdemir, Ö. (2025). Banana-dependent exercise-induced anaphylaxis. Asia Pacific Allergy, 15(1), 42. https://doi.org/10.5415/apallergy.0000000000000168

Park, J. S., Yoo, Y., & Kwon, J. W. (2025). Multiple Allergen Simultaneous Test for Food Allergens Cannot Screen Wheat-Dependent, Exercise-Induced Anaphylaxis and α-Gal Syndrome. Yonsei Med J, 66(1), 58-62. https://doi.org/10.3349/ymj.2024.0031

Patel, R. R., Biswas, R., Walia-Kals, J., Hsieh, B., & Weinstein, M. (2025). Food-Dependent Exercise-Induced Anaphylaxis on a Nontraditional Timeline. Cureus, 17(6), e86854. https://doi.org/10.7759/cureus.86854

Piboonpocanun, S., Krikeerati, T., Lumkul, L., Chiang, V., Kan, A. K. C., Phinyo, P., Wongsa, C., Thongngarm, T., Li, P. H., & Sompornrattanaphan, M. (2025). Evaluation of a Novel In-House Gliadin Skin Test Reagent for Diagnosing Wheat-Dependent Exercise-Induced Anaphylaxis (WDEIA). Clin Exp Allergy. https://doi.org/10.1111/cea.70053

Povesi Dascola, C., & Caffarelli, C. (2012). Exercise-induced anaphylaxis: A clinical view. Ital J Pediatr, 38, 43. https://doi.org/10.1186/1824-7288-38-43

Sayaca, N. (2023). Exercise-Induced Anaphylaxis. In D. Kaya Utlu (Ed.), Functional Exercise Anatomy and Physiology for Physiotherapists (pp. 561-572). Springer International Publishing. https://doi.org/10.1007/978-3-031-27184-7_29

Srisuwatchari, W., Kanchanapoomi, K., & Pacharn, P. (2025). Molecular Diagnosis to IgE-mediated Wheat Allergy and Wheat-Dependent Exercise-Induced Anaphylaxis. Clin Rev Allergy Immunol, 68(1), 47. https://doi.org/10.1007/s12016-025-09059-w

Tang, T., Zhang, J., Wu, J., & Zhang, Y. (2025). Deciphering the challenge: rhabdomyolysis diagnosis in food-dependent exercise-induced anaphylaxis. Oxf Med Case Reports, 2025(3), omae200. https://doi.org/10.1093/omcr/omae200

Veramendi-Espinoza, L., Galván, C., & Durán, R. (2025). [Wheat-dependent exercise-induced anaphylaxis: The diagnostic utility of Omega-5 Gliadin in two clinical cases from Lima, Peru]. Rev Alerg Mex, 72(2), 76-79. https://doi.org/10.29262/ram.v72i2.1455 (Anafilaxia inducida por el ejercicio dependiente del trigo: utilidad de la Gliadina Omega-5 en dos casos clínicos de Lima, Perú.)

Zogaj, D., Ibranji, A., & Hoxha, M. (2014). Exercise-induced Anaphylaxis: the Role of Cofactors. Mater Sociomed, 26(6), 401-404. https://doi.org/10.5455/msm.2014.26.401-404

Views:

32

Downloads:

13

Published
2025-09-30
Citations
How to Cite
Julia Borkowska, Julia Skowrońska-Borsuk, Martyna Narożniak, Adrianna Ewa Pękacka, Bartłomiej Czerwiec, Adam Borsuk, Joanna Katarzyna Pergoł, Malwina Wojtas, Zuzanna Krupa, & Julia Sposób. (2025). EXERCISE-INDUCED ANAPHYLAXIS: CURRENT INSIGHTS FROM THE LITERATURE. International Journal of Innovative Technologies in Social Science, 5(3(47). https://doi.org/10.31435/ijitss.3(47).2025.3703

Most read articles by the same author(s)