DENGUE: A GLOBAL HEALTH CHALLENGE - CURRENT VIEWS ON PATHOGENESIS, DIAGNOSIS, TREATMENT AND PREVENTION
Abstract
Background: Dengue is a global threat expanding its geographic reach and spreading to a growing world population. Up to 3 billion people are at risk. Dengue virus infection can be asymptomatic or sparse, but can also cause dengue hemorrhagic fever and dengue shock syndrome.
Aim: The purpose of this article is to highlight the challenges of effective treatment, multi-pronged prevention and safe immunoprophylaxis of dengue virus.
Methods: A review of scientific articles published on PubMed and Google Scholar from 2020 to 2025.
Results: Due to the number and complexity of dengue serotypes, as well as the antibody-dependent amplification mechanism characteristic of this virus, creating a universal, effective and safe vaccine is a difficult task. It is all the more important because of the lack of specific treatment, which is so necessary in the case of a severe course of the disease in the form of hemorrhagic fever or shock syndrome. It is also necessary to control vectors through chemical, biological and environmental methods.
Conclusion: Dengue is now a serious global public health threat that requires urgent action. Key areas for further research and development include a better understanding of pathogenesis, especially in the context of symptomatic DENV infections, and increased work on a variety of treatment and control options, as well as the development of a universal, safe and effective vaccine. The ultimate goal is to reduce the threat of the disease worldwide.
References
Khan, M. B., Yang, Z. S., Lin, C. Y., et al. (2023). Dengue overview: An updated systemic review. Journal of Infection and Public Health, 16(10), 1625–1642. https://doi.org/10.1016/j.jiph.2023.08.001
Barnard, T. R., Abram, Q. H., Lin, Q. F., Wang, A. B., & Sagan, S. M. (2021). Molecular determinants of flavivirus virion assembly. Trends in Biochemical Sciences, 46(5), 378–390. https://doi.org/10.1016/j.tibs.2020.12.007
Parveen, S., Riaz, Z., Saeed, S., et al. (2023). Dengue hemorrhagic fever: A growing global menace. Journal of Water and Health, 21(11), 1632–1650. https://doi.org/10.2166/wh.2023.114
Bosch, I., Reddy, A., de Puig, H., et al. (2020). Serotype-specific detection of dengue viruses in a nonstructural protein 1-based enzyme-linked immunosorbent assay validated with a multi-national cohort. PLoS Neglected Tropical Diseases, 14(6), e0008203. https://doi.org/10.1371/journal.pntd.0008203
Witte, P., Venturini, S., Meyer, H., Zeller, A., & Christ, M. (2024). Dengue fever—Diagnosis, risk stratification, and treatment. Deutsches Ärzteblatt International, 121(23), 773–778. https://doi.org/10.3238/arztebl.m2024.0175
Kularatne, S. A., & Dalugama, C. (2022). Dengue infection: Global importance, immunopathology and management. Clinical Medicine (London), 22(1), 9–13. https://doi.org/10.7861/clinmed.2021-0791
Sinha, S., Singh, K., Ravi Kumar, Y. S., et al. (2024). Dengue virus pathogenesis and host molecular machineries. Journal of Biomedical Science, 31(1), 43. https://doi.org/10.1186/s12929-024-01030-9
Facchinelli, L., Badolo, A., & McCall, P. J. (2023). Biology and behavior of Aedes aegypti in the human environment: Opportunities for vector control of arbovirus transmission. Viruses, 15(3), 636. https://doi.org/10.3390/v15030636
Roy, S. K., & Bhattacharjee, S. (2021). Dengue virus: Epidemiology, biology, and disease aetiology. Canadian Journal of Microbiology, 67(10), 687–702. https://doi.org/10.1139/cjm-2020-0572
Nie, P., & Feng, J. (2023). Niche and range shifts of Aedes aegypti and Ae. albopictus suggest that the latecomer shows a greater invasiveness. Insects, 14(10), 810. https://doi.org/10.3390/insects14100810
Pajor, M. J., Long, B., & Liang, S. Y. (2024). Dengue: A focused review for the emergency clinician. American Journal of Emergency Medicine, 82, 82–87. https://doi.org/10.1016/j.ajem.2024.05.022
Sirisena, P. D. N. N., Mahilkar, S., Sharma, C., Jain, J., & Sunil, S. (2021). Concurrent dengue infections: Epidemiology and clinical implications. Indian Journal of Medical Research, 154(5), 669–679. https://doi.org/10.4103/ijmr.IJMR_1219_18
Andrade, E. H. P., Figueiredo, L. B., Vilela, A. P. P., et al. (2016). Spatial-temporal co-circulation of dengue virus 1, 2, 3, and 4 associated with coinfection cases in a hyperendemic area of Brazil: A 4-week survey. American Journal of Tropical Medicine and Hygiene, 94(5), 1080–1084. https://doi.org/10.4269/ajtmh.15-0892
Kok, B. H., Lim, H. T., Lim, C. P., Lai, N. S., Leow, C. Y., & Leow, C. H. (2023). Dengue virus infection: A review of pathogenesis, vaccines, diagnosis and therapy. Virus Research, 324, 199018. https://doi.org/10.1016/j.virusres.2022.199018
Wang, W. H., Urbina, A. N., Chang, M. R., et al. (2020). Dengue hemorrhagic fever: A systemic literature review of current perspectives on pathogenesis, prevention and control. Journal of Microbiology, Immunology and Infection, 53(6), 963–978. https://doi.org/10.1016/j.jmii.2020.03.007
Ly, H. (2024). Dengue fever in the Americas. Virulence, 15(1), 2375551. https://doi.org/10.1080/21505594.2024.2375551
Dubot-Pérès, A., Vongsouvath, M., Phimolsarnnousith, V., Ashley, E. A., & Newton, P. N. (2021). Dengue diagnostic test use to identify Aedes-borne disease hotspots. Lancet Planetary Health, 5(8), e503. https://doi.org/10.1016/S2542-5196(21)00174-1
Moallemi, S., Lloyd, A. R., & Rodrigo, C. (2023). Early biomarkers for prediction of severe manifestations of dengue fever: A systematic review and a meta-analysis. Scientific Reports, 13(1), 17485. https://doi.org/10.1038/s41598-023-44559-9
Trivedi, S., & Chakravarty, A. (2022). Neurological complications of dengue fever. Current Neurology and Neuroscience Reports, 22(8), 515–529. https://doi.org/10.1007/s11910-022-01213-7
Paraná, V. C., Feitosa, C. A., da Silva, G. C. S., Gois, L. L., & Santos, L. A. (2024). Risk factors associated with severe dengue in Latin America: A systematic review and meta-analysis. Tropical Medicine & International Health, 29(3), 173–191. https://doi.org/10.1111/tmi.13968
Kalaimathi, K., Rani, J. M. J., Vijayakumar, S., et al. (2022). Anti-dengue potential of mangiferin: Intricate network of dengue to human genes. Revista Brasileira de Farmacognosia, 32(3), 410–420. https://doi.org/10.1007/s43450-022-00258-6
Ratanakomol, T., Roytrakul, S., Wikan, N., & Smith, D. R. (2022). Oroxylin A shows limited antiviral activity toward dengue virus. BMC Research Notes, 15(1), 154. https://doi.org/10.1186/s13104-022-06040-0
Tayal, A., Kabra, S. K., & Lodha, R. (2023). Management of dengue: An updated review. Indian Journal of Pediatrics, 90(2), 168–177. https://doi.org/10.1007/s12098-022-04394-8
Araiza-Garaygordobil, D., García-Martínez, C. E., Burgos, L. M., et al. (2021). Dengue and the heart. Cardiovascular Journal of Africa, 32(5), 276–283. https://doi.org/10.5830/CVJA-2021-033
Ogunlade, S. T., Meehan, M. T., Adekunle, A. I., & McBryde, E. S. (2023). A systematic review of mathematical models of dengue transmission and vector control: 2010–2020. Viruses, 15(1), 254. https://doi.org/10.3390/v15010254
Durrance-Bagale, A., Hoe, N., Lai, J., Liew, J. W. K., Clapham, H., & Howard, N. (2024). Dengue vector control in high-income, urban settings: A scoping review of approaches and methods. PLoS Neglected Tropical Diseases, 18(4), e0012081. https://doi.org/10.1371/journal.pntd.0012081
Killeen, G. F. (2020). Control of malaria vectors and management of insecticide resistance through universal coverage with next-generation insecticide-treated nets. The Lancet, 395(10233), 1394–1400. https://doi.org/10.1016/S0140-6736(20)30745-5
Okumu, F. (2020). The fabric of life: What if mosquito nets were durable and widely available but insecticide-free? Malaria Journal, 19(1), 260. https://doi.org/10.1186/s12936-020-03321-6
Bohari, R., Jin Hin, C., Matusop, A., et al. (2020). Wide area spray of bacterial larvicide, Bacillus thuringiensis israelensis strain AM65-52, integrated in the national vector control program impacts dengue transmission in an urban township in Sibu district, Sarawak, Malaysia. PLoS ONE, 15(4), e0230910. https://doi.org/10.1371/journal.pone.0230910
Ogunlade, S. T., Meehan, M. T., Adekunle, A. I., Rojas, D. P., Adegboye, O. A., & McBryde, E. S. (2021). Aedes-borne arboviral infections, controls and Wolbachia-based strategies. Vaccines (Basel), 9(1), 32. https://doi.org/10.3390/vaccines9010032
Sim, S., Ng, L. C., Lindsay, S. W., & Wilson, A. L. (2020). A greener vision for vector control: The example of the Singapore dengue control program. PLoS Neglected Tropical Diseases, 14(8), e0008428. https://doi.org/10.1371/journal.pntd.0008428
Jones, R. T., Ant, T. H., Cameron, M. M., & Logan, J. G. (2021). Novel control strategies for mosquito-borne diseases. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1818), 20190802. https://doi.org/10.1098/rstb.2019.0802
Shukla, R., Ramasamy, V., Shanmugam, R. K., Ahuja, R., & Khanna, N. (2020). Antibody-dependent enhancement: A challenge for developing a safe dengue vaccine. Frontiers in Cellular and Infection Microbiology, 10, 572681. https://doi.org/10.3389/fcimb.2020.572681
Izmirly, A. M., Alturki, S. O., Connors, J., & Haddad, E. K. (2020). Challenges in dengue vaccine development: Pre-existing infections and cross-reactivity. Frontiers in Immunology, 11, 1055. https://doi.org/10.3389/fimmu.2020.01055
Waggoner, J. J., Katzelnick, L. C., Burger-Calderon, R., et al. (2021). Antibody-dependent enhancement of severe disease is mediated by serum viral load in pediatric dengue virus infections. Journal of Infectious Diseases, 221(11), 1846–1854. https://doi.org/10.1093/infdis/jiz618
Wilder-Smith, A., Cherian, T., & Hombach, J. (2025). Dengue vaccine development and deployment into routine immunization. Vaccines (Basel), 13(5), 483. https://doi.org/10.3390/vaccines13050483
Wilder-Smith, A., Hombach, J., Ferguson, N., et al. (2019). Deliberations of the Strategic Advisory Group of Experts on Immunization on the use of CYD-TDV dengue vaccine. The Lancet Infectious Diseases, 19(1), e31–e38. https://doi.org/10.1016/S1473-3099(18)30494-8
Rivera, L., Biswal, S., Sáez-Llorens, X., et al. (2022). Three-year efficacy and safety of Takeda’s dengue vaccine candidate (TAK-003). Clinical Infectious Diseases, 75(1), 107–117. https://doi.org/10.1093/cid/ciab864
White, L. J., Young, E. F., Stoops, M. J., et al. (2021). Defining levels of dengue virus serotype-specific neutralizing antibodies induced by a live attenuated tetravalent dengue vaccine (TAK-003). PLoS Neglected Tropical Diseases, 15(3), e0009258. https://doi.org/10.1371/journal.pntd.0009258
López-Medina, E., Biswal, S., Sáez-Llorens, X., et al. (2022). Efficacy of a dengue vaccine candidate (TAK-003) in healthy children and adolescents 2 years after vaccination. Journal of Infectious Diseases, 225(9), 1521–1532. https://doi.org/10.1093/infdis/jiaa761
Daniels, B. C., Ferguson, N., & Dorigatti, I. (2024, August 11). Efficacy, public health impact and optimal use of the Takeda dengue vaccine. medRxiv. https://doi.org/10.1101/2024.08.10.24311393
Freedman, D. O. (2023). A new dengue vaccine (TAK-003) now WHO recommended in endemic areas; What about travellers? Journal of Travel Medicine, 30(7), taad132. https://doi.org/10.1093/jtm/taad132
Köpke, C., Rothe, C., Zeder, A., et al. (2025). First clinical experiences with the tetravalent live vaccine against dengue (Qdenga®) in travellers: A multicentric TravVacNet study in Germany. Journal of Travel Medicine, 32(2), taaf004. https://doi.org/10.1093/jtm/taaf004
Angelin, M., Sjölin, J., Kahn, F., et al. (2023). Qdenga®—A promising dengue fever vaccine; Can it be recommended to non-immune travelers? Travel Medicine and Infectious Disease, 54, 102598. https://doi.org/10.1016/j.tmaid.2023.102598
Views:
36
Downloads:
12
Copyright (c) 2025 Aleksandra Drabik, Elżbieta Bebrysz, Ida Dunder, Magdalena Koss, Mateusz Biszewski, Karolina Dębek-Kalinowska, Piotr Bartnik, Jarosław Baran, Jan Palmi, Weronika Ziomek

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.