THE USE OF STEM CELLS IN THE TREATMENT OF NEURODEGENERATIVE DISEASES - CURRENT STATE OF RESEARCH AND CLINICAL PERSPECTIVES

Keywords: Stem Cells, Neurodegenerative Diseases, Clinical Trials, Neuroregeneration, Systematic Review, Mesenchymal Stem Cells

Abstract

Introduction and aim: Neurodegenerative diseases, including Alzheimer’s, Parkinson’s, multiple sclerosis and amyotrophic lateral sclerosis, remain highly challenging due to their progressive course and lack of disease-modifying therapies. Stem cell-based strategies are increasingly investigated for their potential in neuroregeneration, immunomodulation and functional recovery. This study aims to summarize current evidence on stem cell applications in neurodegenerative diseases based on recent systematic reviews and meta-analyses.

Material and methods: A structured literature search was performed in PubMed, Medline and Google Scholar using the terms “stem cells,” “neurodegenerative diseases,” “clinical trials,” “systematic review,” and “meta-analysis.” Eligible publications included English-language systematic reviews and human studies from 2015–2025. Over 30 relevant sources were analyzed by disease type and stem cell modality.

Results: Most studies report a favorable safety profile, particularly with mesenchymal (MSC), neural (NSC) and induced pluripotent stem cells (iPSC). Clinical trials in Parkinson’s disease demonstrated measurable motor improvements, while applications in multiple sclerosis and spinal cord injuries showed immunomodulatory and functional benefits. Evidence in Alzheimer’s disease and ALS remains limited and preliminary. Across conditions, heterogeneity of methods and small sample sizes reduce generalizability.

Conclusions: Stem cell therapy shows promise as an innovative approach in neurodegenerative disorders, though it remains experimental. Encouraging early outcomes highlight the need for large-scale, standardized and long-term trials to confirm efficacy, optimize protocols and ensure safety. Stem cells may become central to neuroregenerative medicine, but they are not yet ready for routine clinical use.

References

Deng, H., Zhao, J., Li, J., Chen, C., Hu, Z., Wu, X., & Ge, L. (2024). Therapeutic efficacy of extracellular vesicles derived from stem cells for Alzheimer’s disease: A meta-analysis study. Frontiers in Bioscience (Landmark Edition), 29(9), 340. https://doi.org/10.31083/j.fbl2909340

Cone, A. S., Yuan, X., Sun, L., Duke, L. C., Vreones, M. P., Carrier, A. N., Kenyon, S. M., Carver, S. R., Benthem, S. D., Stimmell, A. C., Moseley, S. C., Hike, D., Grant, S. C., Wilber, A. A., Olcese, J. M., & Meckes, D. G. Jr. (2021). Mesenchymal stem cell-derived extracellular vesicles ameliorate Alzheimer’s disease-like phenotypes in a preclinical mouse model. Theranostics, 11(17), 8129–8142. https://doi.org/10.7150/thno.62069

Wang, Z., Peng, W., Zhang, C., Sheng, C., Huang, W., Wang, Y., & Fan, R. (2015). Effects of stem cell transplantation on cognitive decline in animal models of Alzheimer’s disease: A systematic review and meta-analysis. Scientific Reports, 5, 12134. https://doi.org/10.1038/srep12134

Zhou, Z., Shi, B., Xu, Y., Zhang, J., Liu, X., Zhou, X., Feng, B., Ma, J., & Cui, H. (2023). Neural stem/progenitor cell therapy for Alzheimer’s disease in preclinical rodent models: A systematic review and meta-analysis. Stem Cell Research & Therapy, 14(1), 3. https://doi.org/10.1186/s13287-022-03231-1

Rash, B. G., Ramdas, K. N., Agafonova, N., Naioti, E., McClain-Moss, L., Zainul, Z., Varnado, B., Peterson, K., Brown, M., Leal, T., Kopcho, S., Carballosa, R., Patel, P., Brody, M., Herskowitz, B., Fuquay, A., Rodriguez, S., Jacobson, A. F., Leon, R., ... Hare, J. M. (2025). Allogeneic mesenchymal stem cell therapy with laromestrocel in mild Alzheimer’s disease: A randomized controlled phase 2a trial. Nature Medicine, 31(4), 1257–1266. https://doi.org/10.1038/s41591-025-03559-0

Zheng, Y., Zhou, J., Wang, Y., Fan, F., Liu, S., & Wang, Y. (2022). Neural stem/progenitor cell transplantation in Parkinson’s rodent animals: A meta-analysis and systematic review. Stem Cells Translational Medicine, 11(4), 383–393. https://doi.org/10.1093/stcltm/szac006

Park, J. M., Rahmati, M., Lee, S. C., Shin, J. I., & Kim, Y. W. (2024). Effects of mesenchymal stem cells on dopaminergic neurons, motor and memory functions in animal models of Parkinson’s disease: A systematic review and meta-analysis. Neural Regeneration Research, 19(7), 1584–1592. https://doi.org/10.4103/1673-5374.387976

Zhang, Z., Wang, Y., Zhang, Z., & Qi, Z. (2025). Network meta-analysis of stem cell therapies for Parkinson’s disease: Exploring the optimal strategy based on animal models. Stem Cells and Development, 34(11–12), 227–239. https://doi.org/10.1089/scd.2025.0056

Hills, R., Mossman, J. A., Bratt-Leal, A. M., Tran, H., Williams, R. M., Stouffer, D. G., Sokolova, I. V., Sanna, P. P., Loring, J. F., & Lelos, M. J. (2023). Neurite outgrowth and gene expression profile correlate with efficacy of human induced pluripotent stem cell-derived dopamine neuron grafts. Stem Cells and Development, 32(13–14), 387–397. https://doi.org/10.1089/scd.2023.0043

Fu, C. L., Dong, B. C., Jiang, X., Li, D., & Yao, J. (2024). A cell therapy approach based on iPSC-derived midbrain organoids for the restoration of motor function in a Parkinson’s disease mouse model. Heliyon, 10(2), e24234. https://doi.org/10.1016/j.heliyon.2024.e24234

Jeon, J., Cha, Y., Hong, Y. J., Lee, I. H., Jang, H., Ko, S., Naumenko, S., Kim, M., Ryu, H. L., Shrestha, Z., Lee, N., Park, T. Y., Park, H., Kim, S. H., Yoon, K. J., Song, B., Schweitzer, J., Herrington, T. M., Kong, S. W., ... Kim, K. S. (2025). Pre-clinical safety and efficacy of human induced pluripotent stem cell-derived products for autologous cell therapy in Parkinson’s disease. Cell Stem Cell, 32(3), 343–360.e7. https://doi.org/10.1016/j.stem.2025.01.006

Yanwu, Y., Meiling, G., Yunxia, Z., & Qiukui, H. (2020). Mesenchymal stem cells in experimental autoimmune encephalomyelitis model of multiple sclerosis: A systematic review and meta-analysis. Multiple Sclerosis and Related Disorders, 44, 102200. https://doi.org/10.1016/j.msard.2020.102200

Chen, L., Coleman, R., Leang, R., Tran, H., Kopf, A., Walsh, C. M., Sears-Kraxberger, I., Steward, O., Macklin, W. B., Loring, J. F., & Lane, T. E. (2014). Human neural precursor cells promote neurologic recovery in a viral model of multiple sclerosis. Stem Cell Reports, 2(6), 825–837. https://doi.org/10.1016/j.stemcr.2014.04.005

Amin, M. N., Hashish, R., Agha Tabari, K., Swami, S. S., Kasagga, A., Assefa, A. K., & Yu, A. K. (2025). Immunomodulatory role of mesenchymal stem cell therapy in multiple sclerosis: A systematic review. Cureus, 17(6), e86988. https://doi.org/10.7759/cureus.86988

Dulamea, A. (2015). Mesenchymal stem cells in multiple sclerosis: Translation to clinical trials. Journal of Medicine and Life, 8(1), 24–27. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397514/

Harris, V. K., Stark, J., Vyshkina, T., Blackshear, L., Joo, G., Stefanova, V., Sara, G., & Sadiq, S. A. (2018). Phase I trial of intrathecal mesenchymal stem cell-derived neural progenitors in progressive multiple sclerosis. EBioMedicine, 29, 23–30. https://doi.org/10.1016/j.ebiom.2018.02.002

Cohen, J. A. (2013). Mesenchymal stem cell transplantation in multiple sclerosis. Journal of the Neurological Sciences, 333(1–2), 43–49. https://doi.org/10.1016/j.jns.2012.12.009

Yamashita, T., Kushida, Y., Wakao, S., Tadokoro, K., Nomura, E., Omote, Y., Takemoto, M., Hishikawa, N., Ohta, Y., Dezawa, M., & Abe, K. (2020). Therapeutic benefit of Muse cells in a mouse model of amyotrophic lateral sclerosis. Scientific Reports, 10(1), 17102. https://doi.org/10.1038/s41598-020-74216-4

Vercelli, A., Mereuta, O. M., Garbossa, D., Muraca, G., Mareschi, K., Rustichelli, D., Ferrero, I., Mazzini, L., Madon, E., & Fagioli, F. (2008). Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiology of Disease, 31(3), 395–405. https://doi.org/10.1016/j.nbd.2008.05.016

Lombardi, I., Ferrero, C., Vulcano, E., Rasà, D. M., Gelati, M., Pastor, D., Carletti, R. M., de la Morena, S., Profico, D. C., Longobardi, S., Lazzarino, E., Perciballi, E., Rosati, J. D., Martinez, S., Vercelli, A., Vescovi, A. L., Boido, M., & Ferrari, D. (2025). Safety and efficacy evaluation of intracerebroventricular human neural stem cell transplantation in SOD1 mice as a novel approach for ALS. Journal of Translational Medicine, 23(1), 529. https://doi.org/10.1186/s12967-025-06529-9

Frawley, L., Taylor, N. T., Sivills, O., McPhillamy, E., To, T. D., Wu, Y., Chin, B. Y., & Wong, C. Y. (2024). Stem cell therapy for the treatment of amyotrophic lateral sclerosis: Comparison of the efficacy of mesenchymal stem cells, neural stem cells, and induced pluripotent stem cells. Biomedicines, 13(1), 35. https://doi.org/10.3390/biomedicines13010035

Moura, M. C., Novaes, M. R., Zago, Y. S., Eduardo, E. J., & Casulari, L. A. (2016). Efficacy of stem cell therapy in amyotrophic lateral sclerosis: A systematic review and meta-analysis. Journal of Clinical Medicine Research, 8(4), 317–324. https://doi.org/10.14740/jocmr2495w

Glass, J. D., Boulis, N. M., Johe, K., Rutkove, S. B., Federici, T., Polak, M., Kelly, C., & Feldman, E. L. (2012). Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: Results of a phase I trial in 12 patients. Stem Cells, 30(6), 1144–1151. https://doi.org/10.1002/stem.1079

Gong, Z., Xia, K., Xu, A., Yu, C., Wang, C., Zhu, J., Huang, X., Chen, Q., Li, F., & Liang, C. (2020). Stem cell transplantation: A promising therapy for spinal cord injury. Current Stem Cell Research & Therapy, 15(4), 321–331. https://doi.org/10.2174/1574888X14666190823144424

Zheng, Y., Gallegos, C. M., Xue, H., Li, S., Kim, D. H., Zhou, H., Xia, X., Liu, Y., & Cao, Q. (2022). Transplantation of human induced pluripotent stem cell-derived neural progenitor cells promotes forelimb functional recovery after cervical spinal cord injury. Cells, 11(17), 2765. https://doi.org/10.3390/cells11172765

Silvestro, S., Bramanti, P., Trubiani, O., & Mazzon, E. (2020). Stem cells therapy for spinal cord injury: An overview of clinical trials. International Journal of Molecular Sciences, 21(2), 659. https://doi.org/10.3390/ijms21020659

Lee, S., Nam, H., Joo, K. M., & Lee, S. H. (2022). Advances in neural stem cell therapy for spinal cord injury: Safety, efficacy, and future perspectives. Neurospine, 19(4), 946–960. https://doi.org/10.14245/ns.2244658.329

Curtis, E., Martin, J. R., Gabel, B., Sidhu, N., Rzesiewicz, T. K., Mandeville, R., Van Gorp, S., Leerink, M., Tadokoro, T., Marsala, S., Jamieson, C., Marsala, M., & Ciacci, J. D. (2018). A first-in-human, phase I study of neural stem cell transplantation for chronic spinal cord injury. Cell Stem Cell, 22(6), 941–950.e6. https://doi.org/10.1016/j.stem.2018.05.014

Yoon, S. H., Shim, Y. S., Park, Y. H., Chung, J. K., Nam, J. H., Kim, M. O., Park, H. C., Park, S. R., Min, B. H., Kim, E. Y., Choi, B. H., Park, H., & Ha, Y. (2007). Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial. Stem Cells, 25(8), 2066–2073. https://doi.org/10.1634/stemcells.2006-0807

Hills, R., Mossman, J. A., Bratt-Leal, A. M., Tran, H., Williams, R. M., Stouffer, D. G., Sokolova, I. V., Sanna, P. P., Loring, J. F., & Lelos, M. J. (2023). Neurite outgrowth and gene expression profile correlate with efficacy of human induced pluripotent stem cell-derived dopamine neuron grafts. Stem Cells and Development, 32(13–14), 387–397. https://doi.org/10.1089/scd.2023.0043

Morizane, A., Kikuchi, T., Hayashi, T., Mizuma, H., Takara, S., Doi, H., Mawatari, A., Glasser, M. F., Shiina, T., Ishigaki, H., Itoh, Y., Okita, K., Yamasaki, E., Doi, D., Onoe, H., Ogasawara, K., Yamanaka, S., & Takahashi, J. (2017). MHC matching improves engraftment of iPSC-derived neurons in non-human primates. Nature Communications, 8(1), 385. https://doi.org/10.1038/s41467-017-00926-5

Yoon, S. J., Elahi, L. S., Pașca, A. M., Marton, R. M., Gordon, A., Revah, O., Miura, Y., Walczak, E. M., Holdgate, G. M., Fan, H. C., Huguenard, J. R., Geschwind, D. H., & Pașca, S. P. (2019). Reliability of human cortical organoid generation. Nature Methods, 16(1), 75–78. https://doi.org/10.1038/s41592-018-0255-0

Takahashi, J. (2020). iPS cell-based therapy for Parkinson’s disease: A Kyoto trial. Regenerative Therapy, 13, 18–22. https://doi.org/10.1016/j.reth.2020.06.002

Song, B., Cha, Y., Ko, S., Jeon, J., Lee, N., Seo, H., Park, K. J., Lee, I. H., Lopes, C., Feitosa, M., Luna, M. J., Jung, J. H., Kim, J., Hwang, D., Cohen, B. M., Teicher, M. H., Leblanc, P., Carter, B. S., Kordower, J. H., ... Kim, K. S. (2020). Human autologous iPSC-derived dopaminergic progenitors restore motor function in Parkinson’s disease models. Journal of Clinical Investigation, 130(2), 904–920. https://doi.org/10.1172/JCI130767

Itakura, G., Kobayashi, Y., Nishimura, S., Iwai, H., Takano, M., Iwanami, A., Toyama, Y., Okano, H., & Nakamura, M. (2015). Controlling immune rejection is a fail-safe system against potential tumorigenicity after human iPSC-derived neural stem cell transplantation. PLOS ONE, 10(2), e0116413. https://doi.org/10.1371/journal.pone.0116413

Volarevic, V., Markovic, B. S., Gazdic, M., Volarevic, A., Jovicic, N., Arsenijevic, N., Armstrong, L., Djonov, V., Lako, M., & Stojkovic, M. (2018). Ethical and safety issues of stem cell-based therapy. International Journal of Medical Sciences, 15(1), 36–45. https://doi.org/10.7150/ijms.21666

Heslop, J. A., Hammond, T. G., Santeramo, I., Tort Piella, A., Hopp, I., Zhou, J., Baty, R., Graziano, E. I., Proto Marco, B., Caron, A., Sköld, P., Andrews, P. W., Baxter, M. A., Hay, D. C., Hamdam, J., Sharpe, M. E., Patel, S., Jones, D. R., Reinhardt, J., ... Park, B. K. (2015). Concise review: Workshop review: Understanding and assessing the risks of stem cell-based therapies. Stem Cells Translational Medicine, 4(4), 389–400. https://doi.org/10.5966/sctm.2014-0110

Hmadcha, A., Domínguez-Bendala, J., Wakeman, J., Arredouani, M., & Soria, B. (2009). The immune boundaries for stem cell-based therapies: Problems and prospective solutions. Journal of Cellular and Molecular Medicine, 13(8A), 1464–1475. https://doi.org/10.1111/j.1582-4934.2009.00837.x

Alomar, R., & Erbaş, O. (2024). Stem cells and ethics. JEB Medical Sciences, 5(1), 164–169. https://doi.org/10.5606/jebms.2024.1086

Hussen, B. M., Taheri, M., Yashooa, R. K., Abdullah, G. H., Abdullah, S. R., Kheder, R. K., & Mustafa, S. A. (2024). Revolutionizing medicine: Recent developments and future prospects in stem-cell therapy. International Journal of Surgery, 110(12), 8002–8024. https://doi.org/10.1097/JS9.0000000000002109

Lyons, S., Salgaonkar, S., & Flaherty, G. T. (2022). International stem cell tourism: A critical literature review and evidence-based recommendations. International Health, 14(2), 132–141. https://doi.org/10.1093/inthealth/ihab050

Views:

23

Downloads:

9

Published
2025-09-22
Citations
How to Cite
Jarosław Baran, Aleksandra Drabik, Elżbieta Bebrysz, Ida Dunder, Magdalena Koss, Mateusz Biszewski, Karolina Dębek-Kalinowska, Piotr Bartnik, Jan Palmi, & Weronika Ziomek. (2025). THE USE OF STEM CELLS IN THE TREATMENT OF NEURODEGENERATIVE DISEASES - CURRENT STATE OF RESEARCH AND CLINICAL PERSPECTIVES. International Journal of Innovative Technologies in Social Science, 3(3(47). https://doi.org/10.31435/ijitss.3(47).2025.3693

Most read articles by the same author(s)

<< < 1 2