BOVINE COLOSTRUM SUPPLEMENTATION IN INFLAMMATORY BOWEL DISEASE: BENEFITS AND ITS ROLE IN GASTROINTESTINAL HEALTH
Abstract
Growing evidence suggests that many gastrointestinal and some systemic diseases involve dysfunction of the mucosal barrier. Colostrum is the milk produced during the first few days after birth. Bovine colostrum, a nutrient-rich fluid containing growth factors, hormones, and paracrine substances, shows promise in promoting mucosal healing in various inflammatory, infectious, and injury-related conditions. This review outlines the structure and function of the intestinal barrier and how its disruption contributes to diseases such as inflammatory bowel disease (IBD).
IBD comprises chronic, relapsing disorders with unclear causes, and current treatments -targeting immune dysregulation and microbiota imbalances - remain inadequate. Therapies include anti-inflammatory drugs, immunosuppressants, biologics, and supportive interventions like diet and supplements. We explore bovine colostrum as a potential complementary therapy for IBD, reviewing its active components and their gastrointestinal effects based on in vitro and in vivo studies, while also considering its benefits.
References
Aldars-García, L., Chaparro, M., & Gisbert, J. (2021). Systematic review: The gut microbiome and its potential clinical application in inflammatory bowel disease. Microorganisms, 9(5), 977. https://doi.org/10.3390/microorganisms9050977
Luján, J. A., Rugeles, M. T., & Taborda, N. A. (2019). Contribution of the microbiota to intestinal homeostasis and its role in the pathogenesis of HIV-1 infection. Current HIV Research, 17(1), 13–25. https://doi.org/10.2174/1570162X17666190311114808
Marchetti, G., Tincati, C., & Silvestri, G. (2013). Microbial translocation in the pathogenesis of HIV infection and AIDS. Clinical Microbiology Reviews, 26(1), 2–18. https://doi.org/10.1128/CMR.00050-12
Fukui, H. (2016). Increased intestinal permeability and decreased barrier function: Does it really influence the risk of inflammation? Inflammatory Intestinal Diseases, 1(3), 135–145. https://doi.org/10.1159/000447252
Holtmann, G. J., Ford, A. C., & Talley, N. J. (2016). Pathophysiology of irritable bowel syndrome. The Lancet Gastroenterology & Hepatology, 1(2), 133–146. https://doi.org/10.1016/S2468-1253(16)30023-1
Bernstein, C. N., Eliakim, A., Fedail, S., Fried, M., Gearry, R., Goh, K. L., Hamid, S., Khan, A. G., Khalif, I., Ng, S. C., et al. (2016). World Gastroenterology Organisation global guidelines: Inflammatory bowel disease. Journal of Clinical Gastroenterology, 50(10), 813–818. https://doi.org/10.1097/MCG.0000000000000660
Zhang, Y. Z., & Li, Y. Y. (2014). Inflammatory bowel disease: Pathogenesis. World Journal of Gastroenterology, 20(1), 91–99. https://doi.org/10.3748/wjg.v20.i1.91
Xu, H., Liu, M., Cao, J., Li, X., Fan, D., Xia, Y., Lu, X., Li, J., Ju, D., & Zhao, H. (2019). The dynamic interplay between the gut microbiota and autoimmune diseases. Journal of Immunology Research, 2019, 1–14. https://doi.org/10.1155/2019/7548254
Lee, D., Albenberg, L., Compher, C., Baldassano, R., Piccoli, D., Lewis, J. D., & Wu, G. D. (2015). Diet in the pathogenesis and treatment of inflammatory bowel diseases. Gastroenterology, 148(6), 1087–1106. https://doi.org/10.1053/j.gastro.2015.01.007
Sigall-Boneh, R., Levine, A., Lomer, M., Wierdsma, N., Allan, P., Fiorino, G., Gatti, S., Jonkers, D., Kierkus, J., Katsanos, K. H., et al. (2017). Research gaps in diet and nutrition in inflammatory bowel disease: A topical review by D-ECCO Working Group (Dietitians of ECCO). Journal of Crohn’s and Colitis, 11(12), 1407–1419. https://doi.org/10.1093/ecco-jcc/jjx109
Salim, S. Y., & Söderholm, J. D. (2011). Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflammatory Bowel Diseases, 17(1), 362–381. https://doi.org/10.1002/ibd.21403
Wehkamp, J., Harder, J., Weichenthal, M., Mueller, O., Herrlinger, K. R., Fellermann, K., Schroeder, J. M., & Stange, E. F. (2003). Inducible and constitutive beta-defensins are differentially expressed in Crohn’s disease and ulcerative colitis. Inflammatory Bowel Diseases, 9(4), 215–223. https://doi.org/10.1097/00054725-200307000-00001
Owczarek, D., Rodacki, T., Domagała-Rodacka, R., Cibor, D., & Mach, T. (2016). Diet and nutritional factors in inflammatory bowel diseases. World Journal of Gastroenterology, 22(3), 895–905. https://doi.org/10.3748/wjg.v22.i3.895
Fichna, J. (2016). Inflammatory bowel disease treatment. Pharmacological Reports, 68(4), 787–788. https://doi.org/10.1016/j.pharep.2016.05.010
Yamamoto-Furusho, J. K. (2012). Treatment of inflammatory bowel disease. Revista de Gastroenterología de México, 77(1), 39–41. https://doi.org/10.1016/j.rgmx.2011.10.007
Langer, P. (2009). Differences in the composition of colostrum and milk in eutherians reflect differences in immunoglobulin transfer. Journal of Mammalogy, 90(2), 332–339. https://doi.org/10.1644/08-MAMM-R-287.1
Bodammer, P., Maletzki, C., Waitz, G., & Emmrich, J. (2011). Prophylactic application of bovine colostrum ameliorates murine colitis via induction of immunoregulatory cells. Journal of Nutrition, 141(6), 1056–1061. https://doi.org/10.3945/jn.110.137059
Schroeder, B. O. (2019). Fight them or feed them: How the intestinal mucus layer manages the gut microbiota. Gastroenterology Reports, 7(1), 3–12. https://doi.org/10.1093/gastro/goy052
Bevins, C. L., & Salzman, N. (2011). Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nature Reviews Genetics, 9(5), 356–368. https://doi.org/10.1038/nrmicro2546
Paradis, T., Bègue, H., Basmaciyan, L., Dalle, F., & Bon, F. (2021). Tight junctions as a key for pathogen invasion in intestinal epithelial cells. International Journal of Molecular Sciences, 22(5), 2506. https://doi.org/10.3390/ijms22052506
Kelly, P. (2020). Starvation and its effects on the gut. Advances in Nutrition, 12(3), 897–903. https://doi.org/10.1093/advances/nmaa135
Brubaker, P. L. (2011). Glucagon-like peptide-2 and the regulation of intestinal growth and function. Comprehensive Physiology, 8(3), 1185–1210. https://doi.org/10.1002/cphy.c170055
Fesler, Z., Mitova, E., & Brubaker, P. L. (2020). GLP-2, EGF, and the intestinal epithelial IGF-1 receptor interactions in the regulation of crypt cell proliferation. Endocrinology, 161(6), bqaa040. https://doi.org/10.1210/endocr/bqaa040
Galura, G. M., Chavez, L. O., Robles, A., & McCallum, R. (2019). Gastroduodenal injury: Role of protective factors. Current Gastroenterology Reports, 21(5), 34. https://doi.org/10.1007/s11894-019-0701-x
Goldenring, J. R. (2018). Pyloric metaplasia, pseudopyloric metaplasia, ulcer-associated cell lineage and spasmolytic polypeptide-expressing metaplasia: Reparative lineages in the gastrointestinal mucosa. The Journal of Pathology, 245(2), 132–137. https://doi.org/10.1002/path.5066
Rao, J. N., Rathor, N., Zhuang, R., Zou, T., Liu, L., Xiao, L., Turner, D. J., & Wang, J.-Y. (2012). Polyamines regulate intestinal epithelial restitution through TRPC1-mediated Ca²⁺ signaling by differentially modulating STIM1 and STIM2. American Journal of Physiology – Cell Physiology, 303(3), C308–C317. https://doi.org/10.1152/ajpcell.00120.2012
Timmons, J., Chang, E. T., Wang, J.-Y., & Rao, J. N. (2012). Polyamines and gut mucosal homeostasis. Journal of Gastrointestinal & Digestive System, 2(S7), 1. https://doi.org/10.4172/2161-069X.S7-001
Playford, R., & Weiser, M. (2021). Bovine colostrum: Its constituents and uses. Nutrients, 13(1), 265. https://doi.org/10.3390/nu13010265
Chatterton, D. E., Nguyen, D. N., Bering, S. B., & Sangild, P. T. (2013). Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns. International Journal of Biochemistry & Cell Biology, 45(8), 1730–1747. https://doi.org/10.1016/j.biocel.2013.04.028
Blais, M., Pouliot, Y., Gauthier, S., Boutin, Y., & Lessard, M. (2014). A gene expression programme induced by bovine colostrum whey promotes growth and wound-healing processes in intestinal epithelial cells. Journal of Nutritional Science, 3, e57. https://doi.org/10.1017/jns.2014.56
Playford, R. J., Macdonald, C. E., & Johnson, W. S. (2000). Colostrum and milk-derived peptide growth factors for the treatment of gastrointestinal disorders. American Journal of Clinical Nutrition, 72(1), 5–14. https://doi.org/10.1093/ajcn/72.1.5
Asaro, J. A., Khan, Z., Brewer, M., Klose, K., Pesce, C., Schanler, R. J., & Codipilly, C. N. (2021). Relationship between milk fat globule-epidermal growth factor 8 and intestinal cytokines in infants born preterm. Journal of Pediatrics, 230, 71–75.e1. https://doi.org/10.1016/j.jpeds.2020.11.014
Stenson, W. F., & Ciorba, M. A. (2021). Nonmicrobial activation of TLRs controls intestinal growth, wound repair, and radioprotection. Frontiers in Immunology, 11, 617510. https://doi.org/10.3389/fimmu.2020.617510
Jardé, T., Chan, W. H., Rossello, F. J., Kahlon, T. K., Theocharous, M., Arackal, T. K., Flores, T., Giraud, M., Richards, E., Chan, E., et al. (2020). Mesenchymal niche-derived neuregulin-1 drives intestinal stem-cell proliferation and regeneration of damaged epithelium. Cell Stem Cell, 27(4), 646–662.e7. https://doi.org/10.1016/j.stem.2020.06.021
Menchetti, L., Traina, G., Tomasello, G., Casagrande-Proietti, P., Leonardi, L., Barbato, O., & Brecchia, G. (2016). Potential benefits of colostrum in gastrointestinal diseases. Frontiers in Bioscience (Scholar Edition), 8, 331–351. https://doi.org/10.2741/s465
Puppel, K., Gołębiewski, M., Grodkowski, G., Slósarz, J., Kunowska-Slósarz, M., Solarczyk, P., Łukasiewicz, M., Balcerak, M., & Przysucha, T. (2019). Composition and factors affecting quality of bovine colostrum: A review. Animals, 9(12), 1070. https://doi.org/10.3390/ani9121070
Lönnerdal, B. (2013). Bioactive proteins in breast milk. Journal of Paediatrics and Child Health, 49(Suppl 1), 1–7. https://doi.org/10.1111/jpc.12104
Playford, R. J., Floyd, D. N., Macdonald, C. E., Calnan, D. P., Adenekan, R. O., Johnson, W., Goodlad, R. A., & Marchbank, T. (1999). Bovine colostrum is a health food supplement which prevents NSAID-induced gut damage. Gut, 44(5), 653–658. https://doi.org/10.1136/gut.44.5.653
Christiansen, S., Guo, M., & Kjelden, D. (2010). Chemical composition and nutrient profile of low-molecular-weight fraction of bovine colostrum. International Dairy Journal, 20(9), 630–636. https://doi.org/10.1016/j.idairyj.2010.02.008
Silva, E., Rangel, A., Mürmam, L., & Bezerra, M. F. (2019). Bovine colostrum: Benefits of its use in human food. Food Science and Technology, 39(Suppl 1), 355–362. https://doi.org/10.1590/fst.04318
Mehra, R., Marnila, P., & Korhonen, H. (2006). Milk immunoglobulins for health promotion. International Dairy Journal, 16(11), 1262–1271. https://doi.org/10.1016/j.idairyj.2006.06.011
Detzel, C. J., Horgan, A., Henderson, A. L., Petschow, B. W., Warner, C. D., Maas, K. J., & Weaver, E. M. (2015). Bovine immunoglobulin/protein isolate binds pro-inflammatory bacterial compounds and prevents immune activation in an intestinal co-culture model. PLoS ONE, 10(4), e0120278. https://doi.org/10.1371/journal.pone.0120278
Barrington, G. M., & Parish, S. M. (2001). Bovine neonatal immunology. Veterinary Clinics of North America: Food Animal Practice, 17(3), 463–476. https://doi.org/10.1016/S0749-0720(15)30015-5
Riedel-Caspari, G. (1993). The influence of colostral leukocytes on the course of an experimental Escherichia coli infection and serum antibodies in neonatal calves. Veterinary Immunology and Immunopathology, 35(3–4), 275–288. https://doi.org/10.1016/0165-2427(93)90021-R
Yang, T. J., Ayoub, I. A., & Rewinski, M. J. (1997). Lactation-stage-dependent changes of lymphocyte subpopulations in mammary secretions: Inversion of CD4⁺/CD8⁺ T-cell ratios at parturition. American Journal of Reproductive Immunology, 37(5), 378–383. https://doi.org/10.1111/j.1600-0897.1997.tb00248.x
Platt, R., Burdett, W., & Roth, J. A. (2006). Induction of antigen-specific T-cell subset activation to bovine respiratory disease viruses by a modified-live virus vaccine. American Journal of Veterinary Research, 67(7), 1179–1184. https://doi.org/10.2460/ajvr.67.7.1179
Le Jan, C. (1996). Cellular components of mammary secretions and neonatal immunity: A review. Veterinary Research, 27(4–5), 403–417. https://hal.archives-ouvertes.fr/hal-00902432
Hagiwara, K., Kataoka, S., Yamanaka, H., Kirisawa, R., & Iwai, H. (2000). Detection of cytokines in bovine colostrum. Veterinary Immunology and Immunopathology, 76(3–4), 183–190. https://doi.org/10.1016/S0165-2427(00)00219-5
Meki, A., Saleem, T. H., Al-Ghazali, M. H., & Sayed, A. A. (2003). Interleukins 6, 8 and 10 and tumor necrosis factor-alpha and its soluble receptor I in human milk at different periods of lactation. Nutritional Research, 23(7), 845–855. https://doi.org/10.1016/S0271-5317(03)00074-3
Gonzalez, D. D., & Dus Santos, M. J. (2017). Bovine colostral cells — The often forgotten component of colostrum. Journal of the American Veterinary Medical Association, 250(9), 998–1005. https://doi.org/10.2460/javma.250.9.998
Shing, C. M., Peake, J. M., Suzuki, K., Jenkins, D. G., & Coombes, J. S. (2009). Bovine colostrum modulates cytokine production in human peripheral blood mononuclear cells stimulated with lipopolysaccharide and phytohemagglutinin. Journal of Interferon & Cytokine Research, 29(1), 37–44. https://doi.org/10.1089/jir.2008.0029
Marek, A., Zagierski, M., Liberek, A., Aleksandrowicz, E., Korzon, M., Krzykowski, G., Kamińska, B., & Szlagatys-Sidorkiewicz, A. (2009). TGF-β1, IL-10 and IL-4 in colostrum of allergic and nonallergic mothers. Acta Biochimica Polonica, 56(3), 411–414. https://doi.org/10.18388/abp.2009_2460
McGrath, B. A., Fox, P. F., McSweeney, P. L. H., & Kelly, A. L. (2016). Composition and properties of bovine colostrum: A review. Dairy Science & Technology, 96(2), 133–158. https://doi.org/10.1007/s13594-015-0258-x
Legrand, D. (2016). Overview of lactoferrin as a natural immune modulator. Journal of Pediatrics, 173(Suppl 1), S10–S15. https://doi.org/10.1016/j.jpeds.2016.02.071
Zelechowska, P., Agier, J., & Brzezińska-Błaszczyk, E. (2016). Endogenous antimicrobial factors in the treatment of infectious diseases. Central European Journal of Immunology, 41(4), 419–425. https://doi.org/10.5114/ceji.2016.65134
Wakabayashi, H., Oda, H., Yamauchi, K., & Abe, F. (2014). Lactoferrin for prevention of common viral infections. Journal of Infection and Chemotherapy, 20(11), 666–671. https://doi.org/10.1016/j.jiac.2014.08.003
Lauterbach, R., Kamińska, E., Michalski, P., & Lauterbach, J. P. (2016). Lactoferrin — A glycoprotein of great therapeutic potential. Developmental Period Medicine, 20(2), 118–125. PMID: 27416630
Legrand, D., Elass, E., Carpentier, M., & Mazurier, J. (2005). Lactoferrin: A modulator of immune and inflammatory responses. Cellular and Molecular Life Sciences, 62(22), 2549–2559. https://doi.org/10.1007/s00018-005-5370-2
Zhang, Y. Z., & Li, Y. Y. (2014). Inflammatory bowel disease: Pathogenesis. World Journal of Gastroenterology, 20(1), 91–99. https://doi.org/10.3748/wjg.v20.i1.91
Wehkamp, J., Götz, M., Herrlinger, K., Steurer, W., & Stange, E. F. (2016). Inflammatory bowel disease. Deutsches Ärzteblatt International, 113(5), 72–82. https://doi.org/10.3238/arztebl.2016.0072
Guan, Q. (2019). A comprehensive review and update on the pathogenesis of inflammatory bowel disease. Journal of Immunology Research, 2019, 7247238. https://doi.org/10.1155/2019/7247238
Lamb, C. A., Kennedy, N. A., Raine, T., Hendy, P. A., Smith, P. J., Limdi, J. K., Hayee, B., Lomer, M. C. E., Parkes, G. C., Selinger, C., et al. (2019). British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut, 68(Suppl 3), S1–S106. https://doi.org/10.1136/gutjnl-2019-318484
Nadpara, N., Reichenbach, Z. W., Ehrlich, A. C., & Friedenberg, F. (2020). Current status of medical therapy for inflammatory bowel disease: The wealth of medications. Digestive Diseases and Sciences, 65(9), 2769–2779. https://doi.org/10.1007/s10620-020-06471-4
Seyedian, S. S., Nokhostin, F., & Malamir, M. D. (2019). A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. Journal of Medicine and Life, 12(2), 113–122. https://doi.org/10.25122/jml-2018-0075
Hartman, C., Berkowitz, D., Weiss, B., Shaoul, R., Levine, A., Adiv, O. E., Shapira, R., Fradkin, A., Wilschanski, M., Tamir, A., et al. (2008). Nutritional supplementation with polymeric diet enriched with transforming growth factor-beta 2 for children with Crohn’s disease. Israel Medical Association Journal, 10(7), 503–507. PMID: 18751621
Rubio, A., Pigneur, B., Garnier-Lengliné, H., Talbotec, C., Schmitz, J., Canioni, D., Goulet, O., & Ruemmele, F. M. (2011). The efficacy of exclusive nutritional therapy in paediatric Crohn’s disease, comparing fractionated oral vs continuous enteral feeding. Alimentary Pharmacology & Therapeutics, 33(12), 1332–1339. https://doi.org/10.1111/j.1365-2036.2011.04662.x
Views:
20
Downloads:
9
Copyright (c) 2025 Kinga Teper, Patrycja Świercz, Konrad Strużek, Agnieszka Kwiatkowska, Ewelina Mączka, Wiktor Tracz, Sandra Khiralla-Gawlik, Aleksandra Anna Strzelecka, Aleksandra Ewa Basak, Jakub Tomaszewski

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.





