NON-ALCOHOLIC FATTY LIVER DISEASE (NAFLD): DISEASE MECHANISMS AND CONTEMPORARY THERAPEUTIC APPROACHES - A LITERATURE REVIEW

Keywords: NAFLD, NASH, Non-Alcoholic Fatty Liver, Insulin Resistance, Treatment, Mediterranean Diet, GLP-1RA, SGLT2i, PPAR, Gut Microbiota, Fibrogenesis, FGF19, FGF21, THR-β

Abstract

Introduction: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, representing a significant public health challenge. Over the past decades, it has been recognized as a multisystem disease closely associated with type 2 diabetes mellitus (T2DM), cardiovascular diseases (CVD), and chronic kidney disease (CKD).

Objective: The aim of this review is to discuss contemporary pathogenetic mechanisms underlying NAFLD as well as current and experimental therapeutic strategies, encompassing non-pharmacological, pharmacological, and microbiota-targeted interventions.

Methods: An analysis and synthesis of data from preclinical studies, clinical trials (phases II and III), meta-analyses, and recommendations of scientific societies published over the past two decades was conducted. The review includes works indexed in PubMed, Scopus, and Web of Science databases, with a focus on NAFLD and NASH therapies.

Conclusions: NAFLD is a complex disease with a heterogeneous pathogenesis, in which lipotoxicity, cellular stress, gut dysbiosis, and insulin resistance play key roles. The most well-documented therapeutic approach remains lifestyle modification (Mediterranean diet, physical activity). Promising effects have been demonstrated by certain agents used in the treatment of type 2 diabetes (e.g., GLP-1 receptor agonists, SGLT2 inhibitors, pioglitazone) as well as novel molecules such as FXR agonists, THR-β agonists, and FGF19/FGF21 analogues. Further clinical studies are necessary to validate the efficacy and safety of these therapies.

References

Armstrong, M.J. ∙ Adams, L.A. ∙ Canbay, A., Extrahepatic complications of nonalcoholic fatty liver disease Hepatology. 2014; 59:1174-1197

Masuoka, H.C. ∙ Chalasani, N. Nonalcoholic fatty liver disease: an emerging threat to obese and diabetic individuals Ann N Y Acad Sci. 2013; 1281:106-122

Tsuneto, A. ∙ Hida, A. ∙ Sera, N. Fatty liver incidence and predictive variables

Hypertens Res. 2010; 33:638-643

Browning, J.D. ∙ Szczepaniak, L.S. ∙ Dobbins, R. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity Hepatology. 2004; 40:1387-1395

Blachier, M. ∙ Leleu, H. ∙ Peck-Radosavljevic, M. The burden of liver disease in Europe: a review of available epidemiological data J Hepatol. 2013; 58:593-608

Musso, G. ∙ Gambino, R. ∙ Cassader, M. Meta-analysis: natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity Ann Med. 2011; 43:617-649

Musso, G. ∙ Gambino, R. ∙ Tabibian, J.H. Association of non-alcoholic fatty liver disease with chronic kidney disease: a systematic review and meta-analysis PLoS Med. 2014; 11:e1001680

Musso, G. ∙ Cassader, M. ∙ Olivetti, C. Association of obstructive sleep apnoea with the presence and severity of non-alcoholic fatty liver disease. A systematic review and meta-analysis Obes Rev. 2013; 14:417-431

Alonso C et al. Metabolomic identification of subtypes of nonalcoholic steatohepatitis. Gastroenterology 152, 1449–1461.e7 (2017).

Neuschwander-Tetri BA Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology 52, 774–788

Cusi K Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology 142, 711–725.e6 (2012)

Boursier J et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 63, 764–775 (2016).

Hirsova P, Ibrahim SH, Gores GJ & Malhi H Lipotoxic lethal and sublethal stress signaling in hepatocytes: relevance to NASH pathogenesis. J. Lipid Res 57, 1758–1770 (2016).

Mota M, Banini BA, Cazanave SC & Sanyal AJ Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism 65, 1049–1061 (2016).

Neuschwander-Tetri BA Non-alcoholic fatty liver disease. BMC Med. 15, 45 (2017).

Lomonaco R et al. Effect of adipose tissue insulin resistance on metabolic parameters and liver histology in obese patients with nonalcoholic fatty liver disease. Hepatology 55, 1389–1397

Pal M, Febbraio MA & Lancaster GI The roles of c-Jun NH2-terminal kinases (JNKs) in obesity and insulin resistance. J. Physiol. (Lond.) 594, 267–279 (2016).

Han MS et al. JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science 339, 218–222 (2013).

Samuel VT & Shulman GI The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J. Clin. Invest 126, 12–22 (2016).

Magkos F et al. Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab. 23, 591–601 (2016).

Gastaldelli A et al. Importance of changes in adipose tissue insulin resistance to histological response during thiazolidinedione treatment of patients with nonalcoholic steatohepatitis. Hepatology 50, 1087–1093 (2009).

Donnelly KL et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest 115, 1343–1351 (2005)

Jang C et al. The small intestine converts dietary fructose into glucose and organic acids. Cell Metab. 27, 351–361.e3 (2018).

Truswell AS, Seach JM & Thorburn AW Incomplete absorption of pure fructose in healthy subjects and the facilitating effect of glucose. Am. J. Clin. Nutr 48, 1424–1430 (1988).

Rao SS, Attaluri A, Anderson L & Stumbo P Ability of the normal human small intestine to absorb fructose: evaluation by breath testing. Clin. Gastroenterol. Hepatol 5, 959–963 (2007).

Abdelmalek MF et al. Higher dietary fructose is associated with impaired hepatic adenosine triphosphate homeostasis in obese individuals with type 2 diabetes. Hepatology 56, 952–960

Schwarz JM et al. Effects of dietary fructose restriction on liver fat, de novo lipogenesis, and insulin kinetics in children with obesity. Gastroenterology 153, 743–752 (2017).

Softic S, Cohen DE & Kahn CR Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig. Dis. Sci 61, 1282–1293 (2016).

Wakil SJ & Abu-Elheiga LA Fatty acid metabolism: target for metabolic syndrome. J. Lipid Res 50 Suppl, S138–S143 (2009).

Benhamed F et al. The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J. Clin. Invest 122, 2176–2194 (2012).

Sanyal AJ et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med 362, 1675–1685 (2010).

Arab JP, Karpen SJ, Dawson PA, Arrese M & Trauner M Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatology 65, 350–362 (2017).

van Nierop FS et al. Clinical relevance of the bile acid receptor TGR5 in metabolism. Lancet Diabetes Endocrinol. 5, 224–233 (2017).

Kajimura S, Spiegelman BM & Seale P Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 22, 546–559 (2015).

Sanyal AJ et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120, 1183–1192 (2001).

Pessayre D & Fromenty B NASH: a mitochondrial disease. J. Hepatol 42, 928–940 (2005).

Bril F et al. Metabolic and histological implications of intrahepatic triglyceride content in nonalcoholic fatty liver disease. Hepatology 65, 1132–1144 (2017).

Yki-Järvinen H Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol. 2, 901–910 (2014).

Perry RJ, Samuel VT, Petersen KF & Shulman GI The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 510, 84–91 (2014).

Luukkonen PK et al. Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease. J. Hepatol 64, 1167–1175 (2016).

Mauer AS, Hirsova P, Maiers JL, Shah VH & Malhi H Inhibition of sphingosine 1-phosphate signaling ameliorates murine nonalcoholic steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol 312, G300–G313 (2017).

Han MS et al. Lysophosphatidylcholine as a death effector in the lipoapoptosis of hepatocytes. J. Lipid Res 49, 84–97 (2008).

Ioannou GN The role of cholesterol in the pathogenesis of NASH. Trends Endocrinol. Metab 27, 84–95 (2016).

Trevaskis JL et al. Glucagon-like peptide-1 receptor agonism improves metabolic, biochemical, and histopathological indices of nonalcoholic steatohepatitis in mice. Am. J. Physiol. Gastrointest. Liver Physiol 302, G762–G772 (2012).

Asgharpour A et al. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J. Hepatol 65, 579–588 (2016).

Krishnan A et al. A longitudinal study of whole body, tissue, and cellular physiology in a mouse model of fibrosing NASH with high fidelity to the human condition. Am. J. Physiol. Gastrointest. Liver Physiol 312, G666–G680 (2017).

Han J & Kaufman RJ The role of ER stress in lipid metabolism and lipotoxicity. J. Lipid Res 57, 1329–1338 (2016).

Puri P et al. Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology 134, 568–576 (2008).

Szabo G & Petrasek J Inflammasome activation and function in liver disease. Nat. Rev. Gastroenterol. Hepatol 12, 387–400 (2015).

Guy CD et al. Hedgehog pathway activation parallels histologic severity of injury and fibrosis in human nonalcoholic fatty liver disease. Hepatology 55, 1711–1721 (2012).

Marra F & Bertolani C Adipokines in liver diseases. Hepatology 50, 957–969 (2009).

Abdelmalek MF et al. Higher dietary fructose is associated with impaired hepatic adenosine triphosphate homeostasis in obese individuals with type 2 diabetes. Hepatology 56, 952–960 (2012).

Lanaspa MA et al. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver. J. Biol. Chem 287, 40732–40744 (2012).

Sookoian S & Pirola CJ Obstructive sleep apnea is associated with fatty liver and abnormal liver enzymes: a meta-analysis. Obes. Surg 23, 1815–1825 (2013).

Henao-Mejia J et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012).

Liu R et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med 23, 859–868 (2017).

Horwath JA et al. Obesity-induced hepatic steatosis is mediated by endoplasmic reticulum stress in the subfornical organ of the brain. JCI Insight 2, 90170 (2017).

Loomba R et al. Association between diabetes, family history of diabetes, and risk of nonalcoholic steatohepatitis and fibrosis. Hepatology 56, 943–951 (2012).

Bugianesi E, McCullough AJ & Marchesini G Insulin resistance: a metabolic pathway to chronic liver disease. Hepatology 42, 987–1000 (2005).

Sabio G et al. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322, 1539–1543 (2008).

Tilg H The role of cytokines in non-alcoholic fatty liver disease. Dig. Dis 28, 179–185 (2010).

Ghorpade DS et al. Hepatocyte-secreted DPP4 in obesity promotes adipose inflammation and insulin resistance. Nature 555, 673–677 (2018).

Betrapally NS, Gillevet PM & Bajaj JS Changes in the intestinal microbiome and alcoholic and nonalcoholic liver diseases: causes or effects? Gastroenterology 150, 1745–1755.e3 (2016).

Loomba R et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 25, 1054–1062.e5 (2017).

Bashiardes S, Shapiro H, Rozin S, Shibolet O & Elinav E Non-alcoholic fatty liver and the gut microbiota. Mol. Metab 5, 782–794 (2016).

Cohen LJ et al. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 549, 48–53 (2017).

Schubert K, Olde Damink SWM, von Bergen M & Schaap FG Interactions between bile salts, gut microbiota, and hepatic innate immunity. Immunol. Rev 279, 23–35 (2017).

Marra F & Svegliati-Baroni G Lipotoxicity and the gut–liver axis in NASH pathogenesis. J. Hepatol 68, 280–295 (2018).

Brandl K & Schnabl B Intestinal microbiota and nonalcoholic steatohepatitis. Curr. Opin. Gastroenterol 33, 128–133 (2017).

Leung C, Rivera L, Furness JB & Angus PW The role of the gut microbiota in NAFLD. Nat. Rev. Gastroenterol. Hepatol 13, 412–425 (2016).

Tsuchida T & Friedman SL Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol 14, 397–411 (2017).

Lade A, Noon LA & Friedman SL Contributions of metabolic dysregulation and inflammation to nonalcoholic steatohepatitis, hepatic fibrosis, and cancer. Curr. Opin. Oncol 26, 100–107 (2014).

Wang X et al. Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis. Cell Metab. 24, 848–862 (2016).

Bruschi FV et al. The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells. Hepatology 65, 1875–1890 (2017).

Valenti L & Dongiovanni P Mutant PNPLA3 I148M protein as pharmacological target for liver disease. Hepatology 66, 1026–1028 (2017).

European Association for the Study of the Liver (EASL) European Association for the Study of Diabetes (EASD) European Association for the Study of Obesity (EASO) . Easl-Easd-Easo clinical practice guidelines for the management of non-alcoholic fatty liver disease. J Hepatol (2016) 64(6):1388–402. doi: 10.1016/j.jhep.2015.11.004

Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American association for the study of liver diseases. Hepatology (2018) 67(1):328–57. doi: 10.1002/hep.29367

Glen J, Floros L, Day C, Pryke R. Non-alcoholic fatty liver disease (Nafld): Summary of nice guidance. BMJ (Clinical Res ed (2016) 354:i4428. doi: 10.1136/bmj.i4428

Risi R, Tozzi R, Watanabe M. Beyond weight loss in nonalcoholic fatty liver disease: The role of carbohydrate restriction. Curr Opin Clin Nutr Metab Care (2021) 24(4):349–53. doi: 10.1097/mco.0000000000000762

Hassani Zadeh S, Mansoori A, Hosseinzadeh M. Relationship between dietary patterns and non-alcoholic fatty liver disease: A systematic review and meta-analysis. J Gastroenterol Hepatol (2021) 36(6):1470–8. doi: 10.1111/jgh.15363

Plaz Torres MC, Aghemo A, Lleo A, Bodini G, Furnari M, Marabotto E, et al. Mediterranean Diet and nafld: What we know and questions that still need to be answered. Nutrients (2019) 11(12):2971. doi: 10.3390/nu11122971

Shi JP, Xu JL. Non-drug therapy of non-alcoholic fatty liver disease. Chin J Dig (2020) 40(9):587–90. doi: 10.3760/cma.j.cn311367-20200424-00262

Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (Nafld). Metabolism (2016) 65(8):1038–48. doi: 10.1016/j.metabol.2015.12.012

Esposito K, Kastorini CM, Panagiotakos DB, Giugliano D. Mediterranean Diet and metabolic syndrome: An updated systematic review. Rev Endocrine Metab Disord (2013) 14(3):255–63. doi: 10.1007/s11154-013-9253-9

Pérez-Guisado J, Muñoz-Serrano A. The effect of the Spanish ketogenic Mediterranean diet on nonalcoholic fatty liver disease: A pilot study. J Med Food (2011) 14(7-8):677–80. doi: 10.1089/jmf.2011.0075

Katsagoni CN, Papatheodoridis GV, Ioannidou P, Deutsch M, Alexopoulou A, Papadopoulos N, et al. Improvements in clinical characteristics of patients with non-alcoholic fatty liver disease, after an intervention based on the Mediterranean lifestyle: A randomised controlled clinical trial. Br J Nutr (2018) 120(2):164–75. doi: 10.1017/s000711451800137x

Properzi C, O'Sullivan TA, Sherriff JL, Ching HL, Jeffrey GP, Buckley RF, et al. Ad libitum Mediterranean and low-fat diets both significantly reduce hepatic steatosis: A randomized controlled trial. Hepatology (2018) 68(5):1741–54. doi: 10.1002/hep.30076

Biolato M, Manca F, Marrone G, Cefalo C, Racco S, Miggiano GA, et al. Intestinal permeability after Mediterranean diet and low-fat diet in non-alcoholic fatty liver disease. World J Gastroenterol (2019) 25(4):509–20. doi: 10.3748/wjg.v25.i4.509

Romero-Gómez M, Zelber-Sagi S, Trenell M. Treatment of nafld with diet, physical activity and exercise. J Hepatol (2017) 67(4):829–46. doi: 10.1016/j.jhep.2017.05.016

Kawaguchi T, Charlton M, Kawaguchi A, Yamamura S, Nakano D, Tsutsumi T, et al. Effects of Mediterranean diet in patients with nonalcoholic fatty liver disease: A systematic review, meta-analysis, and meta-regression analysis of randomized controlled trials. Semin liver Dis (2021) 41(3):225–34. doi: 10.1055/s-0041-1723751

Akbulut UE, Isik IA, Atalay A, Eraslan A, Durmus E, Turkmen S, et al. The effect of a Mediterranean diet vs. a low-fat diet on non-alcoholic fatty liver disease in children: A randomized trial. Int J Food Sci Nutr (2022) 73(3):357–66. doi: 10.1080/09637486.2021.1979478

Yurtdaş G, Akbulut G, Baran M, Yılmaz C. The effects of Mediterranean diet on hepatic steatosis, oxidative stress, and inflammation in adolescents with non-alcoholic fatty liver disease: A randomized controlled trial. Pediatr Obes (2022) 17(4):e12872. doi: 10.1111/ijpo.12872

Watanabe M, Tozzi R, Risi R, Tuccinardi D, Mariani S, Basciani S, et al. Beneficial effects of the ketogenic diet on nonalcoholic fatty liver disease: A comprehensive review of the literature. Obes Rev an Off J Int Assoc Study Obes (2020) 21(8):e13024. doi: 10.1111/obr.13024

Luukkonen PK, Dufour S, Lyu K, Zhang XM, Hakkarainen A, Lehtimäki TE, et al. Effect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease. Proc Natl Acad Sci United States America (2020) 117(13):7347–54. doi: 10.1073/pnas.1922344117

Luukkonen PK, Dufour S, Lyu K, Zhang XM, Hakkarainen A, Lehtimäki TE, et al. Effect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease. Proc Natl Acad Sci United States America (2020) 117(13):7347–54. doi: 10.1073/pnas.1922344117

Muyyarikkandy MS, McLeod M, Maguire M, Mahar R, Kattapuram N, Zhang C, et al. Branched chain amino acids and carbohydrate restriction exacerbate ketogenesis and hepatic mitochondrial oxidative dysfunction during nafld. FASEB J Off Publ Fed Am Societies Exp Biol (2020) 34(11):14832–49. doi: 10.1096/fj.202001495R

Anekwe CV, Chandrasekaran P, Stanford FC. Ketogenic diet-induced elevated cholesterol, elevated liver enzymes and potential non-alcoholic fatty liver disease. Cureus (2020) 12(1):e6605. doi: 10.7759/cureus.6605

Crabtree CD, Kackley ML, Buga A, Fell B, LaFountain RA, Hyde PN, et al. Comparison of ketogenic diets with and without ketone salts versus a low-fat diet: Liver fat responses in overweight adults. Nutrients (2021) 13(3):966. doi: 10.3390/nu13030966

Markova M, Pivovarova O, Hornemann S, Sucher S, Frahnow T, Wegner K, et al. Isocaloric diets high in animal or plant protein reduce liver fat and inflammation in individuals with type 2 diabetes. Gastroenterology (2017) 152(3):571–85.e8. doi: 10.1053/j.gastro.2016.10.007

Cohen CC, Li KW, Alazraki AL, Beysen C, Carrier CA, Cleeton RL, et al. Dietary sugar restriction reduces hepatic De novo lipogenesis in adolescent boys with fatty liver disease. J Clin Invest (2021) 131(24):e150996. doi: 10.1172/jci150996

Schwimmer JB, Ugalde-Nicalo P, Welsh JA, Angeles JE, Cordero M, Harlow KE, et al. Effect of a low free sugar diet vs usual diet on nonalcoholic fatty liver disease in adolescent boys: A randomized clinical trial. Jama (2019) 321(3):256–65. doi: 10.1001/jama.2018.20579

So B, Kim HJ, Kim J, Song W. Exercise-induced myokines in health and metabolic diseases. Integr Med Res (2014) 3(4):172–9. doi: 10.1016/j.imr.2014.09.007

Brouwers B, Schrauwen-Hinderling VB, Jelenik T, Gemmink A, Sparks LM, Havekes B, et al. Exercise training reduces intrahepatic lipid content in people with and people without nonalcoholic fatty liver. Am J Physiol Endocrinol Metab (2018) 314(2):E165–e73. doi: 10.1152/ajpendo.00266.2017

Wong VW, Wong GL, Chan RS, Shu SS, Cheung BH, Li LS, et al. Beneficial effects of lifestyle intervention in non-obese patients with non-alcoholic fatty liver disease. J Hepatol (2018) 69(6):1349–56. doi: 10.1016/j.jhep.2018.08.011

Jia GY, Han T, Gao L, Wang L, Wang SC, Yang L, et al. [Effect of aerobic exercise and resistance exercise in improving non-alcoholic fatty liver disease: A randomized controlled trial]. Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chin J Hepatol (2018) 26(1):34–41. doi: 10.3760/cma.j.issn.1007-3418.2018.01.009

Takahashi A, Abe K, Fujita M, Hayashi M, Okai K, Ohira H. Simple resistance exercise decreases cytokeratin 18 and fibroblast growth factor 21 levels in patients with nonalcoholic fatty liver disease: A retrospective clinical study. Medicine (2020) 99(22):e20399. doi: 10.1097/md.0000000000020399

O'Gorman P, Naimimohasses S, Monaghan A, Kennedy M, Melo AM, NF D, et al. Improvement in histological endpoints of mafld following a 12-week aerobic exercise intervention. Aliment Pharmacol Ther (2020) 52(8):1387–98. doi: 10.1111/apt.15989

Babu AF, Csader S, Männistö V, Tauriainen MM, Pentikäinen H, Savonen K, et al. Effects of exercise on nafld using non-targeted metabolomics in adipose tissue, plasma, urine, and stool. Sci Rep (2022) 12(1):6485. doi: 10.1038/s41598-022-10481-9

Huber Y, Pfirrmann D, Gebhardt I, Labenz C, Gehrke N, Straub BK, et al. Improvement of non-invasive markers of nafld from an individualised, web-based exercise program. Aliment Pharmacol Ther (2019) 50(8):930–9. doi: 10.1111/apt.15427

Keating SE, Hackett DA, Parker HM, O'Connor HT, Gerofi JA, Sainsbury A, et al. Effect of aerobic exercise training dose on liver fat and visceral adiposity. J Hepatol (2015) 63(1):174–82. doi: 10.1016/j.jhep.2015.02.022

Abdelbasset WK, Tantawy SA, Kamel DM, Alqahtani BA, Elnegamy TE, Soliman GS, et al. Effects of high-intensity interval and moderate-intensity continuous aerobic exercise on diabetic obese patients with nonalcoholic fatty liver disease: A comparative randomized controlled trial. Medicine (2020) 99(10):e19471. doi: 10.1097/md.0000000000019471

Keating SE, Hackett DA, George J, Johnson NA. Exercise and non-alcoholic fatty liver disease: A systematic review and meta-analysis. J Hepatol (2012) 57(1):157–66. doi: 10.1016/j.jhep.2012.02.023

Gao Y, Zhang W, Zeng LQ, Bai H, Li J, Zhou J, et al. Exercise and dietary intervention ameliorate high-fat diet-induced nafld and liver aging by inducing lipophagy. Redox Biol (2020) 36:101635. doi: 10.1016/j.redox.2020.101635

Yaskolka Meir A, Rinott E, Tsaban G, Zelicha H, Kaplan A, Rosen P, et al. Effect of green-Mediterranean diet on intrahepatic fat: The direct plus randomised controlled trial. Gut (2021) 70(11):2085–95. doi: 10.1136/gutjnl-2020-323106

Cheng R, Wang L, Le S, Yang Y, Zhao C, Zhang X, et al. A randomized controlled trial for response of microbiome network to exercise and diet intervention in patients with nonalcoholic fatty liver disease. Nat Commun (2022) 13(1):2555. doi: 10.1038/s41467-022-29968-0

Franco I, Bianco A, Mirizzi A, Campanella A, Bonfiglio C, Sorino P, et al. Physical activity and low glycemic index Mediterranean diet: Main and modification effects on nafld score. Results from a randomized clinical trial. Nutrients (2020) 13(1):66. doi: 10.3390/nu13010066

Pratt JSA, Browne A, Browne NT, Bruzoni M, Cohen M, Desai A, et al. Asmbs pediatric metabolic and bariatric surgery guidelines, 2018. Surg Obes related Dis Off J Am Soc Bariatric Surg (2018) 14(7):882–901. doi: 10.1016/j.soard.2018.03.019

Chauhan M, Singh K, Thuluvath PJ. Bariatric surgery in nafld. Dig Dis Sci (2022) 67(2):408–22. doi: 10.1007/s10620-021-07317-3

Nickel F, Tapking C, Benner L, Sollors J, Billeter AT, Kenngott HG, et al. Bariatric surgery as an efficient treatment for non-alcoholic fatty liver disease in a prospective study with 1-year follow-up : Bariscan study. Obes Surg (2018) 28(5):1342–50. doi: 10.1007/s11695-017-3012-z

Nguyen NT, Varela JE. Bariatric surgery for obesity and metabolic disorders: State of the art. Nat Rev Gastroenterol Hepatol (2017) 14(3):160–9. doi: 10.1038/nrgastro.2016.170

Sagredo S, Brahm J, Uribe M, Codoceo V, Smok G. [Acute liver failure after bariatric surgery. a case report and literature review]. Gastroenterol y hepatol (2013) 36(2):76–80. doi: 10.1016/j.gastrohep.2012.06.004

Younus H, Sharma A, Miquel R, Quaglia A, Kanchustambam SR, Carswell KA, et al. Bariatric surgery in cirrhotic patients: Is it safe? Obes Surg (2020) 30(4):1241–8. doi: 10.1007/s11695-019-04214-7

Ali A, Amin MJ, Ahmed MU, Taj A, Aasim M, Tabrez E. Frequency of non-alcoholic fatty liver disease (Nafld) and its associated risk factors among type-2 diabetics. Pak J Med Sci (2022) 38(1):28–33. doi: 10.12669/pjms.38.1.4968

Petit JM, Vergès B. Glp-1 receptor agonists in nafld. Diabetes Metab (2017) 43 Suppl 1:2s28–33. doi: 10.1016/s1262-3636(17)30070-8

Cusi K. Incretin-based therapies for the management of nonalcoholic fatty liver disease in patients with type 2 diabetes. Hepatology (2019) 69(6):2318–22. doi: 10.1002/hep.30670

Jinnouchi H, Sugiyama S, Yoshida A, Hieshima K, Kurinami N, Suzuki T, et al. Liraglutide, a glucagon-like peptide-1 analog, increased insulin sensitivity assessed by hyperinsulinemic-euglycemic clamp examination in patients with uncontrolled type 2 diabetes mellitus. J Diabetes Res (2015) 2015:706416. doi: 10.1155/2015/706416

Petit JM, Cercueil JP, Loffroy R, Denimal D, Bouillet B, Fourmont C, et al. Effect of liraglutide therapy on liver fat content in patients with inadequately controlled type 2 diabetes: The lira-nafld study. J Clin Endocrinol Metab (2017) 102(2):407–15. doi: 10.1210/jc.2016-2775

Armstrong MJ, Gaunt P, Aithal GP, Barton D, Hull D, Parker R, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (Lean): A multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet (London England) (2016) 387(10019):679–90. doi: 10.1016/s0140-6736(15)00803-x

Feng W, Gao C, Bi Y, Wu M, Li P, Shen S, et al. Randomized trial comparing the effects of gliclazide, liraglutide, and metformin on diabetes with non-alcoholic fatty liver disease. J Diabetes (2017) 9(8):800–9. doi: 10.1111/1753-0407.12555

Newsome P, Francque S, Harrison S, Ratziu V, Van Gaal L, Calanna S, et al. Effect of semaglutide on liver enzymes and markers of inflammation in subjects with type 2 diabetes and/or obesity. Aliment Pharmacol Ther (2019) 50(2):193–203. doi: 10.1111/apt.15316

Newsome PN, Buchholtz K, Cusi K, Linder M, Okanoue T, Ratziu V, et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. New Engl J Med (2021) 384(12):1113–24. doi: 10.1056/NEJMoa2028395

Dickson I. Semaglutide is safe and efficacious for Nash resolution. Nat Rev Gastroenterol Hepatol (2021) 18(1):6. doi: 10.1038/s41575-020-00396-z

Flint A, Andersen G, Hockings P, Johansson L, Morsing A, Sundby Palle M, et al. Randomised clinical trial: Semaglutide versus placebo reduced liver steatosis but not liver stiffness in subjects with non-alcoholic fatty liver disease assessed by magnetic resonance imaging. Aliment Pharmacol Ther (2021) 54(9):1150–61. doi: 10.1111/apt.16608

Dichtel LE. The glucagon-like peptide-1 receptor agonist, semaglutide, for the treatment of nonalcoholic steatohepatitis. Hepatology (2021) 74(4):2290–2. doi: 10.1002/hep.31886

Cusi K, Sattar N, García-Pérez LE, Pavo I, Yu M, Robertson KE, et al. Dulaglutide decreases plasma aminotransferases in people with type 2 diabetes in a pattern consistent with liver fat reduction: A Post hoc analysis of the award programme. Diabetic Med J Br Diabetic Assoc (2018) 35(10):1434–9. doi: 10.1111/dme.13697

Kuchay MS, Krishan S, Mishra SK, Choudhary NS, Singh MK, Wasir JS, et al. Effect of dulaglutide on liver fat in patients with type 2 diabetes and nafld: Randomised controlled trial (D-lift trial). Diabetologia (2020) 63(11):2434–45. doi: 10.1007/s00125-020-05265-7

Seko Y, Sumida Y, Tanaka S, Mori K, Taketani H, Ishiba H, et al. Effect of 12-week dulaglutide therapy in Japanese patients with biopsy-proven non-alcoholic fatty liver disease and type 2 diabetes mellitus. Hepatol Res Off J Japan Soc Hepatol (2017) 47(11):1206–11. doi: 10.1111/hepr.12837

Fan H, Pan Q, Xu Y, Yang X. Exenatide improves type 2 diabetes concomitant with non-alcoholic fatty liver disease. Arquivos brasileiros endocrinol e metabol (2013) 57(9):702–8. doi: 10.1590/s0004-27302013000900005

Shao N, Kuang HY, Hao M, Gao XY, Lin WJ, Zou W. Benefits of exenatide on obesity and non-alcoholic fatty liver disease with elevated liver enzymes in patients with type 2 diabetes. Diabetes/metab Res Rev (2014) 30(6):521–9. doi: 10.1002/dmrr.2561

Liu L, Yan H, Xia M, Zhao L, Lv M, Zhao N, et al. Efficacy of exenatide and insulin glargine on nonalcoholic fatty liver disease in patients with type 2 diabetes. Diabetes/metab Res Rev (2020) 36(5):e3292. doi: 10.1002/dmrr.3292

Unsal İO, Calapkulu M, Sencar ME, Cakal B, Ozbek M. Evaluation of nafld fibrosis, fib-4 and apri score in diabetic patients receiving exenatide treatment for non-alcoholic fatty liver disease. Sci Rep (2022) 12(1):283. doi: 10.1038/s41598-021-04361-x

Gastaldelli A, Repetto E, Guja C, Hardy E, Han J, Jabbour SA, et al. Exenatide and dapagliflozin combination improves markers of liver steatosis and fibrosis in patients with type 2 diabetes. Diabetes Obes Metab (2020) 22(3):393–403. doi: 10.1111/dom.13907

Colosimo S, Ravaioli F, Petroni ML, Brodosi L, Marchignoli F, Barbanti FA, et al. Effects of antidiabetic agents on steatosis and fibrosis biomarkers in type 2 diabetes: A real-world data analysis. Liver Int (2021) 41(4):731–42. doi: 10.1111/liv.14799

Akuta N, Kawamura Y, Fujiyama S, Saito S, Muraishi N, Sezaki H, et al. Favorable impact of long-term Sglt2 inhibitor for nafld complicated by diabetes mellitus: A 5-year follow-up study. Hepatol Commun (2022) 6(9):2286–97. doi: 10.1002/hep4.2005

Cusi K, Orsak B, Bril F, Lomonaco R, Hecht J, Ortiz-Lopez C, et al. Long-term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus: A randomized trial. Ann Internal Med (2016) 165(5):305–15. doi: 10.7326/m15-1774

Wong C, Yaow CYL, Ng CH, Chin YH, Low YF, Lim AYL, et al. Sodium-glucose Co-transporter 2 inhibitors for non-alcoholic fatty liver disease in Asian patients with type 2 diabetes: A meta-analysis. Front Endocrinol (2020) 11:609135. doi: 10.3389/fendo.2020.609135

Dwinata M, Putera DD, Hasan I, Raharjo M. Sglt2 inhibitors for improving hepatic fibrosis and steatosis in non-alcoholic fatty liver disease complicated with type 2 diabetes mellitus: A systematic review. Clin Exp Hepatol (2020) 6(4):339–46. doi: 10.5114/ceh.2020.102173

Gaborit B, Ancel P, Abdullah AE, Maurice F, Abdesselam I, Calen A, et al. Effect of empagliflozin on ectopic fat stores and myocardial energetics in type 2 diabetes: The empacef study. Cardiovasc Diabetol (2021) 20(1):57. doi: 10.1186/s12933-021-01237-2

Kahl S, Gancheva S, Straßburger K, Herder C, Machann J, Katsuyama H, et al. Empagliflozin effectively lowers liver fat content in well-controlled type 2 diabetes: A randomized, double-blind, phase 4, placebo-controlled trial. Diabetes Care (2020) 43(2):298–305. doi: 10.2337/dc19-0641

Kahl S, Ofstad AP, Zinman B, Wanner C, Schüler E, Sattar N, et al. Effects of empagliflozin on markers of liver steatosis and fibrosis and their relationship to cardiorenal outcomes. Diabetes Obes Metab (2022) 24(6):1061–71. doi: 10.1111/dom.14670

Taheri H, Malek M, Ismail-Beigi F, Zamani F, Sohrabi M, Reza Babaei M, et al. Effect of empagliflozin on liver steatosis and fibrosis in patients with non-alcoholic fatty liver disease without diabetes: A randomized, double-blind, placebo-controlled trial. Adv Ther (2020) 37(11):4697–708. doi: 10.1007/s12325-020-01498-5

Ito D, Shimizu S, Inoue K, Saito D, Yanagisawa M, Inukai K, et al. Comparison of ipragliflozin and pioglitazone effects on nonalcoholic fatty liver disease in patients with type 2 diabetes: A randomized, 24-week, open-label, active-controlled trial. Diabetes Care (2017) 40(10):1364–72. doi: 10.2337/dc17-0518

Miyake T, Yoshida S, Furukawa S, Sakai T, Tada F, Senba H, et al. Ipragliflozin ameliorates liver damage in non-alcoholic fatty liver disease. Open Med (Warsaw Poland) (2018) 13:402–9. doi: 10.1515/med-2018-0059

Takahashi H, Kessoku T, Kawanaka M, Nonaka M, Hyogo H, Fujii H, et al. Ipragliflozin improves the hepatic outcomes of patients with diabetes with nafld. Hepatol Commun (2022) 6(1):120–32. doi: 10.1002/hep4.1696

Latva-Rasku A, Honka MJ, Kullberg J, Mononen N, Lehtimäki T, Saltevo J, et al. The Sglt2 inhibitor dapagliflozin reduces liver fat but does not affect tissue insulin sensitivity: A randomized, double-blind, placebo-controlled study with 8-week treatment in type 2 diabetes patients. Diabetes Care (2019) 42(5):931–7. doi: 10.2337/dc18-1569

Eriksson JW, Lundkvist P, Jansson PA, Johansson L, Kvarnström M, Moris L, et al. Effects of dapagliflozin and n-3 carboxylic acids on non-alcoholic fatty liver disease in people with type 2 diabetes: A double-blind randomised placebo-controlled study. Diabetologia (2018) 61(9):1923–34. doi: 10.1007/s00125-018-4675-2

Shimizu M, Suzuki K, Kato K, Jojima T, Iijima T, Murohisa T, et al. Evaluation of the effects of dapagliflozin, a sodium-glucose Co-Transporter-2 inhibitor, on hepatic steatosis and fibrosis using transient elastography in patients with type 2 diabetes and non-alcoholic fatty liver disease. Diabetes Obes Metab (2019) 21(2):285–92. doi: 10.1111/dom.13520

Tobita H, Yazaki T, Kataoka M, Kotani S, Oka A, Mishiro T, et al. Comparison of dapagliflozin and teneligliptin in nonalcoholic fatty liver disease patients without type 2 diabetes mellitus: A prospective randomized study. J Clin Biochem Nutr (2021) 68(2):173–80. doi: 10.3164/jcbn.20-129

Akuta N, Watanabe C, Kawamura Y, Arase Y, Saitoh S, Fujiyama S, et al. Effects of a sodium-glucose cotransporter 2 inhibitor in nonalcoholic fatty liver disease complicated by diabetes mellitus: Preliminary prospective study based on serial liver biopsies. Hepatol Commun (2017) 1(1):46–52. doi: 10.1002/hep4.1019

Akuta N, Kawamura Y, Fujiyama S, Sezaki H, Hosaka T, Kobayashi M, et al. Sglt2 inhibitor treatment outcome in nonalcoholic fatty liver disease complicated with diabetes mellitus: The long-term effects on clinical features and liver histopathology. Internal Med (Tokyo Japan) (2020) 59(16):1931–7. doi: 10.2169/internalmedicine.4398-19

Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature (2014) 510(7506):542–6. doi: 10.1038/nature13270

Buse JB, Wexler DJ, Tsapas A, Rossing P, Mingrone G, Mathieu C, et al. 2019 Update to: Management of hyperglycemia in type 2 diabetes, 2018. a consensus report by the American diabetes association (Ada) and the European association for the study of diabetes (Easd). Diabetes Care (2020) 43(2):487–93. doi: 10.2337/dci19-0066

Brandt A, Hernández-Arriaga A, Kehm R, Sánchez V, Jin CJ, Nier A, et al. Metformin attenuates the onset of non-alcoholic fatty liver disease and affects intestinal microbiota and barrier in small intestine. Sci Rep (2019) 9(1):6668. doi: 10.1038/s41598-019-43228-0

Li Y, Liu L, Wang B, Wang J, Chen D. Metformin in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Biomed Rep (2013) 1(1):57–64. doi: 10.3892/br.2012.18

Komorizono Y, Hosoyamada K, Imamura N, Kajiya S, Hashiguchi Y, Ueyama N, et al. Metformin dose increase versus added linagliptin in non-alcoholic fatty liver disease and type 2 diabetes: An analysis of the J-link study. Diabetes Obes Metab (2021) 23(3):832–7. doi: 10.1111/dom.14263

Mitrovic B, Gluvic Z, Macut D, Obradovic M, Sudar-Milovanovic E, Soskic S, et al. Effects of metformin-single therapy on the level of inflammatory markers in serum of non-obese T2dm patients with nafld. Endocr Metab Immune Disord Drug Targets (2022) 22(1):117–24. doi: 10.2174/1871530321666210225110140

Harreiter J, Just I, Leutner M, Bastian M, Brath H, Schelkshorn C, et al. Combined exenatide and dapagliflozin has no additive effects on reduction of hepatocellular lipids despite better glycaemic control in patients with type 2 diabetes mellitus treated with metformin: Exenda, a 24-week, prospective, randomized, placebo-controlled pilot trial. Diabetes Obes Metab (2021) 23(5):1129–39. doi: 10.1111/dom.14319

Pinyopornpanish K, Leerapun A, Pinyopornpanish K, Chattipakorn N. Effects of metformin on hepatic steatosis in adults with nonalcoholic fatty liver disease and diabetes: Insights from the cellular to patient levels. Gut liver (2021) 15(6):827–40. doi: 10.5009/gnl20367

Cusi K. A diabetologist's perspective of non-alcoholic steatohepatitis (Nash): Knowledge gaps and future directions. Liver Int (2020) 40 Suppl 1:82–8. doi: 10.1111/liv.14350

Sirtori CR. The pharmacology of statins. Pharmacol Res (2014) 88:3–11. doi: 10.1016/j.phrs.2014.03.002

Zhang QQ, Lu LG. Nonalcoholic fatty liver disease: Dyslipidemia, risk for cardiovascular complications, and treatment strategy. J Clin Trans Hepatol (2015) 3(1):78–84. doi: 10.14218/jcth.2014.00037

Katsiki N, Mikhailidis DP, Mantzoros CS. Non-alcoholic fatty liver disease and dyslipidemia: An update. Metabolism (2016) 65(8):1109–23. doi: 10.1016/j.metabol.2016.05.003

Kim RG, Loomba R, Prokop LJ, Singh S. Statin use and risk of cirrhosis and related complications in patients with chronic liver diseases: A systematic review and meta-analysis. Clin Gastroenterol Hepatol (2017) 15(10):1521–30.e8. doi: 10.1016/j.cgh.2017.04.039

Athyros VG, Boutari C, Stavropoulos K, Anagnostis P, Imprialos KP, Doumas M, et al. Statins: An under-appreciated asset for the prevention and the treatment of nafld or Nash and the related cardiovascular risk. Curr Vasc Pharmacol (2018) 16(3):246–53. doi: 10.2174/1570161115666170621082910

Lee JI, Lee HW, Lee KS, Lee HS, Park JY. Effects of statin use on the development and progression of nonalcoholic fatty liver disease: A nationwide nested case-control study. Am J Gastroenterol (2021) 116(1):116–24. doi: 10.14309/ajg.0000000000000845

Foster T, Budoff MJ, Saab S, Ahmadi N, Gordon C, Guerci AD. Atorvastatin and antioxidants for the treatment of nonalcoholic fatty liver disease: The St Francis heart study randomized clinical trial. Am J Gastroenterol (2011) 106(1):71–7. doi: 10.1038/ajg.2010.299

Cho Y, Rhee H, Kim YE, Lee M, Lee BW, Kang ES, et al. Ezetimibe combination therapy with statin for non-alcoholic fatty liver disease: An open-label randomized controlled trial (Essential study). BMC Med (2022) 20(1):93. doi: 10.1186/s12916-022-02288-2

Henson JB, Patel YA, Muir AJ. Trends in statin utilisation in us adults with non-alcoholic fatty liver disease. Aliment Pharmacol Ther (2021) 54(11-12):1481–9. doi: 10.1111/apt.16646

Hajifathalian K, Tafesh Z, Rosenblatt R, Kumar S, Homan EA, Sharaiha RZ, et al. Effect of statin use on cancer-related mortality in nonalcoholic fatty liver disease: A prospective united states cohort study. J Clin Gastroenterol (2022) 56(2):173–80. doi: 10.1097/mcg.0000000000001503

Doumas M, Imprialos K, Dimakopoulou A, Stavropoulos K, Binas A, Athyros VG. The role of statins in the management of nonalcoholic fatty liver disease. Curr Pharm design (2018) 24(38):4587–92. doi: 10.2174/1381612825666190117114305

Bril F, Portillo Sanchez P, Lomonaco R, Orsak B, Hecht J, Tio F, et al. Liver safety of statins in prediabetes or T2dm and nonalcoholic steatohepatitis: Post hoc analysis of a randomized trial. J Clin Endocrinol Metab (2017) 102(8):2950–61. doi: 10.1210/jc.2017-00867

Casula M, Mozzanica F, Scotti L, Tragni E, Pirillo A, Corrao G, et al. Statin use and risk of new-onset diabetes: A meta-analysis of observational studies. Nutrition Metab Cardiovasc Dis NMCD (2017) 27(5):396–406. doi: 10.1016/j.numecd.2017.03.001

Tanaka Y, Ikeda T, Ogawa H, Kamisako T. Ezetimibe markedly reduces hepatic triglycerides and cholesterol in rats fed on fish oil by increasing the expression of cholesterol efflux transporters. J Pharmacol Exp Ther (2020) 374(1):175–83. doi: 10.1124/jpet.120.265660

Toyoda Y, Takada T, Umezawa M, Tomura F, Yamanashi Y, Takeda K, et al. Identification of hepatic Npc1l1 as an nafld risk factor evidenced by ezetimibe-mediated steatosis prevention and recovery. FASEB bioAdvances (2019) 1(5):283–95. doi: 10.1096/fba.2018-00044

Takeshita Y, Takamura T, Honda M, Kita Y, Zen Y, Kato K, et al. The effects of ezetimibe on non-alcoholic fatty liver disease and glucose metabolism: A randomised controlled trial. Diabetologia (2014) 57(5):878–90. doi: 10.1007/s00125-013-3149-9

Park H, Shima T, Yamaguchi K, Mitsuyoshi H, Minami M, Yasui K, et al. Efficacy of long-term ezetimibe therapy in patients with nonalcoholic fatty liver disease. J Gastroenterol (2011) 46(1):101–7. doi: 10.1007/s00535-010-0291-8

Lee HY, Jun DW, Kim HJ, Oh H, Saeed WK, Ahn H, et al. Ezetimibe decreased nonalcoholic fatty liver disease activity score but not hepatic steatosis. Korean J Internal Med (2019) 34(2):296–304. doi: 10.3904/kjim.2017.194

Noto D, Petta S, Giammanco A, Spina R, Cabibbi D, Porcasi R, et al. Lifestyle versus ezetimibe plus lifestyle in patients with biopsy-proven non-alcoholic steatohepatitis (Listen): A double-blind randomised placebo-controlled trial. Nutrition Metab Cardiovasc Dis NMCD (2022) 32(5):1288–91. doi: 10.1016/j.numecd.2022.01.024

Van der Graaff D, Kwanten WJ, Couturier FJ, Govaerts JS, Verlinden W, Brosius I, et al. Severe steatosis induces portal hypertension by systemic arterial hyporeactivity and hepatic vasoconstrictor hyperreactivity in rats. Lab investigat J Tech Methods Pathol (2018) 98(10):1263–75. doi: 10.1038/s41374-017-0018-z

Francque S, Laleman W, Verbeke L, Van Steenkiste C, Casteleyn C, Kwanten W, et al. Increased intrahepatic resistance in severe steatosis: Endothelial dysfunction, vasoconstrictor overproduction and altered microvascular architecture. Lab investigat J Tech Methods Pathol (2012) 92(10):1428–39. doi: 10.1038/labinvest.2012.103

van der Graaff D, Chotkoe S, De Winter B, De Man J, Casteleyn C, Timmermans JP, et al. Vasoconstrictor antagonism improves functional and structural vascular alterations and liver damage in rats with early nafld. JHEP Rep (2022) 4(2):100412. doi: 10.1016/j.jhepr.2021.100412

Oikonomou D, Georgiopoulos G, Katsi V, Kourek C, Tsioufis C, Alexopoulou A, et al. Non-alcoholic fatty liver disease and hypertension: Coprevalent or correlated? Eur J Gastroenterol Hepatol (2018) 30(9):979–85. doi: 10.1097/meg.0000000000001191

Bravo M, Raurell I, Barberá A, Hide D, Gil M, Estrella F, et al. Synergic effect of atorvastatin and ambrisentan on sinusoidal and hemodynamic alterations in a rat model of Nash. Dis Models Mech (2021) 14(5):dmm048884. doi: 10.1242/dmm.048884

Wang CH, Liu HM, Chang ZY, Huang TH, Lee TY. Losartan prevents hepatic steatosis and macrophage polarization by inhibiting hif-1α in a murine model of nafld. Int J Mol Sci (2021) 22(15):7841. doi: 10.3390/ijms22157841

Park JG, Mok JS, Han YI, Park TS, Kang KW, Choi CS, et al. Connectivity mapping of angiotensin-ppar interactions involved in the amelioration of non-alcoholic steatohepatitis by telmisartan. Sci Rep (2019) 9(1):4003. doi: 10.1038/s41598-019-40322-1

Borém LMA, Neto JFR, Brandi IV, Lelis DF, Santos SHS. The role of the angiotensin ii type I receptor blocker telmisartan in the treatment of non-alcoholic fatty liver disease: A brief review. Hypertension Res Off J Japanese Soc Hypertension (2018) 41(6):394–405. doi: 10.1038/s41440-018-0040-6

Dufour JF, Oneta CM, Gonvers JJ, Bihl F, Cerny A, Cereda JM, et al. Randomized placebo-controlled trial of ursodeoxycholic acid with vitamin e in nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol (2006) 4(12):1537–43. doi: 10.1016/j.cgh.2006.09.025

Haedrich M, Dufour JF. Udca for Nash: End of the story? J Hepatol (2011) 54(5):856–8. doi: 10.1016/j.jhep.2010.10.009

Lindor KD, Kowdley KV, Heathcote EJ, Harrison ME, Jorgensen R, Angulo P, et al. Ursodeoxycholic acid for treatment of nonalcoholic steatohepatitis: Results of a randomized trial. Hepatology (2004) 39(3):770–8. doi: 10.1002/hep.20092

Chen YS, Liu HM, Lee TY. Ursodeoxycholic acid regulates hepatic energy homeostasis and white adipose tissue macrophages polarization in leptin-deficiency obese mice. Cells (2019) 8(3):253. doi: 10.3390/cells8030253

Ratziu V, de Ledinghen V, Oberti F, Mathurin P, Wartelle-Bladou C, Renou C, et al. A randomized controlled trial of high-dose ursodesoxycholic acid for nonalcoholic steatohepatitis. J Hepatol (2011) 54(5):1011–9. doi: 10.1016/j.jhep.2010.08.030

Nadinskaia M, Maevskaya M, Ivashkin V, Kodzoeva K, Pirogova I, Chesnokov E, et al. Ursodeoxycholic acid as a means of preventing atherosclerosis, steatosis and liver fibrosis in patients with nonalcoholic fatty liver disease. World J Gastroenterol (2021) 27(10):959–75. doi: 10.3748/wjg.v27.i10.959

Kunne C, Acco A, Duijst S, de Waart DR, Paulusma CC, Gaemers I, et al. Fxr-dependent reduction of hepatic steatosis in a bile salt deficient mouse model. Biochim Biophys Acta (2014) 1842(5):739–46. doi: 10.1016/j.bbadis.2014.02.004

Mudaliar S, Henry RR, Sanyal AJ, Morrow L, Marschall HU, Kipnes M, et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology (2013) 145(3):574–82.e1. doi: 10.1053/j.gastro.2013.05.042

Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalek MF, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (Flint): A multicentre, randomised, placebo-controlled trial. Lancet (London England) (2015) 385(9972):956–65. doi: 10.1016/s0140-6736(14)61933-4

Ratziu V, Sanyal AJ, Loomba R, Rinella M, Harrison S, Anstee QM, et al. Regenerate: Design of a pivotal, randomised, phase 3 study evaluating the safety and efficacy of obeticholic acid in patients with fibrosis due to nonalcoholic steatohepatitis. Contemp Clin trials (2019) 84:105803. doi: 10.1016/j.cct.2019.06.017

Younossi ZM, Ratziu V, Loomba R, Rinella M, Anstee QM, Goodman Z, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: Interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet (London England) (2019) 394(10215):2184–96. doi: 10.1016/s0140-6736(19)33041-7

Iacono A, Raso GM, Canani RB, Calignano A, Meli R. Probiotics as an emerging therapeutic strategy to treat nafld: Focus on molecular and biochemical mechanisms. J Nutr Biochem (2011) 22(8):699–711. doi: 10.1016/j.jnutbio.2010.10.002

Aron-Wisnewsky J, Vigliotti C, Witjes J, Le P, Holleboom AG, Verheij J, et al. Gut microbiota and human nafld: Disentangling microbial signatures from metabolic disorders. Nat Rev Gastroenterol Hepatol (2020) 17(5):279–97. doi: 10.1038/s41575-020-0269-9

Park JS, Seo JH, Youn HS. Gut microbiota and clinical disease: Obesity and nonalcoholic fatty liver disease. Pediatr gastroenterol Hepatol Nutr (2013) 16(1):22–7. doi: 10.5223/pghn.2013.16.1.22

Shao L, Song Y, Shi JP. Role of gut-liver-immune axis in the pathogenesis of nonalcoholic steatohepatitis. Chin J Hep (2021) 29(6):505–9. doi: 10.3760/cma.j.cn501113-20210430-00215

Stefan N, Häring HU, Cusi K. Non-alcoholic fatty liver disease: Causes, diagnosis, cardiometabolic consequences, and treatment strategies. Lancet Diabetes Endocrinol (2019) 7(4):313–24. doi: 10.1016/s2213-8587(18)30154-2

Hao ZY, Zeng X, Lin Y. Role of the gut microbiota in the diagnosis and treatment of hepatobiliary diseases. Chin J Dig (2020) 40(1):69–70. doi: 10.3760/cma.j.issn.0254-1432.2020.01.017

Aller R, De Luis DA, Izaola O, Conde R, Gonzalez Sagrado M, Primo D, et al. Effect of a probiotic on liver aminotransferases in nonalcoholic fatty liver disease patients: A double blind randomized clinical trial. Eur Rev Med Pharmacol Sci (2011) 15(9):1090–5.

Chen Y, Feng R, Yang X, Dai J, Huang M, Ji X, et al. Yogurt improves insulin resistance and liver fat in obese women with nonalcoholic fatty liver disease and metabolic syndrome: A randomized controlled trial. Am J Clin Nutr (2019) 109(6):1611–9. doi: 10.1093/ajcn/nqy358

Gao ML, Zhao BS, Zhou LH. Effects of intestinal flora regulation therapy on liver function and blood lipid metabolism in patients with non-alcoholic fatty liver. J North Sichuan Med Coll (2021) 36(12):1597–1599,1608. doi: 10.3969/j.issn.1005-3697.2021.12.014

Sepideh A, Karim P, Hossein A, Leila R, Hamdollah M, Mohammad EG, et al. Effects of multistrain probiotic supplementation on glycemic and inflammatory indices in patients with nonalcoholic fatty liver disease: A double-blind randomized clinical trial. J Am Coll Nutr (2016) 35(6):500–5. doi: 10.1080/07315724.2015.1031355

Kobyliak N, Abenavoli L, Mykhalchyshyn G, Kononenko L, Boccuto L, Kyriienko D, et al. A multi-strain probiotic reduces the fatty liver index, cytokines and aminotransferase levels in nafld patients: Evidence from a randomized clinical trial. J gastrointestinal liver Dis JGLD (2018) 27(1):41–9. doi: 10.15403/jgld.2014.1121.271.kby

Kobyliak N, Abenavoli L, Falalyeyeva T, Mykhalchyshyn G, Boccuto L, Kononenko L, et al. Beneficial effects of probiotic combination with omega-3 fatty acids in nafld: A randomized clinical study. Minerva Med (2018) 109(6):418–28. doi: 10.23736/s0026-4806.18.05845-7

Mohamad Nor MH, Ayob N, Mokhtar NM, Raja Ali RA, Tan GC, Wong Z, et al. The effect of probiotics (Mcp(®) bcmc(®) strains) on hepatic steatosis, small intestinal mucosal immune function, and intestinal barrier in patients with non-alcoholic fatty liver disease. Nutrients (2021) 13(9):3192. doi: 10.3390/nu13093192

Bomhof MR, Parnell JA, Ramay HR, Crotty P, Rioux KP, Probert CS, et al. Histological improvement of non-alcoholic steatohepatitis with a prebiotic: A pilot clinical trial. Eur J Nutr (2019) 58(4):1735–45. doi: 10.1007/s00394-018-1721-2

Malaguarnera M, Vacante M, Antic T, Giordano M, Chisari G, Acquaviva R, et al. Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis. Dig Dis Sci (2012) 57(2):545–53. doi: 10.1007/s10620-011-1887-4

Eslamparast T, Poustchi H, Zamani F, Sharafkhah M, Malekzadeh R, Hekmatdoost A. Synbiotic supplementation in nonalcoholic fatty liver disease: A randomized, double-blind, placebo-controlled pilot study. Am J Clin Nutr (2014) 99(3):535–42. doi: 10.3945/ajcn.113.068890

Asgharian A, Askari G, Esmailzade A, Feizi A, Mohammadi V. The effect of symbiotic supplementation on liver enzymes, c-reactive protein and ultrasound findings in patients with non-alcoholic fatty liver disease: A clinical trial. Int J Prev Med (2016) 7:59. doi: 10.4103/2008-7802.178533

Craven L, Rahman A, Nair Parvathy S, Beaton M, Silverman J, Qumosani K, et al. Allogenic fecal microbiota transplantation in patients with nonalcoholic fatty liver disease improves abnormal small intestinal permeability: A randomized control trial. Am J Gastroenterol (2020) 115(7):1055–65. doi: 10.14309/ajg.0000000000000661

Xue L, Deng Z, Luo W, He X, Chen Y. Effect of fecal microbiota transplantation on non-alcoholic fatty liver disease: A randomized clinical trial. Front Cell infection Microbiol (2022) 12:759306. doi: 10.3389/fcimb.2022.759306

Siddiqui MS, Idowu MO, Parmar D, Borg BB, Denham D, Loo NM, et al. A phase 2 double blinded, randomized controlled trial of saroglitazar in patients with nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol (2021) 19(12):2670–2. doi: 10.1016/j.cgh.2020.10.051

Akbari R, Behdarvand T, Afarin R, Yaghooti H, Jalali MT, Mohammadtaghvaei N. Saroglitazar improved hepatic steatosis and fibrosis by modulating inflammatory cytokines and adiponectin in an animal model of non-alcoholic steatohepatitis. BMC Pharmacol Toxicol (2021) 22(1):53. doi: 10.1186/s40360-021-00524-8

Gawrieh S, Noureddin M, Loo N, Mohseni R, Awasty V, Cusi K, et al. Saroglitazar, a ppar-A/Γ agonist, for treatment of nafld: A randomized controlled double-blind phase 2 trial. Hepatology (2021) 74(4):1809–24. doi: 10.1002/hep.31843

Francque SM, Bedossa P, Ratziu V, Anstee QM, Bugianesi E, Sanyal AJ, et al. A randomized, controlled trial of the pan-ppar agonist lanifibranor in Nash. New Engl J Med (2021) 385(17):1547–58. doi: 10.1056/NEJMoa2036205

Gastaldelli A, Sabatini S, Carli F, Gaggini M, Bril F, Belfort-DeAguiar R, et al. Ppar-Γ-Induced changes in visceral fat and adiponectin levels are associated with improvement of steatohepatitis in patients with Nash. Liver Int (2021) 41(11):2659–70. doi: 10.1111/liv.15005

Ratziu V, Harrison SA, Francque S, Bedossa P, Lehert P, Serfaty L, et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-A and -Δ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology (2016) 150(5):1147–59.e5. doi: 10.1053/j.gastro.2016.01.038

Nakajima A, Eguchi Y, Yoneda M, Imajo K, Tamaki N, Suganami H, et al. Randomised clinical trial: Pemafibrate, a novel selective peroxisome proliferator-activated receptor A modulator (Spparmα), versus placebo in patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther (2021) 54(10):1263–77. doi: 10.1111/apt.16596

Kannt A, Wohlfart P, Madsen AN, Veidal SS, Feigh M, Schmoll D. Activation of thyroid hormone receptor-B improved disease activity and metabolism independent of body weight in a mouse model of non-alcoholic steatohepatitis and fibrosis. Br J Pharmacol (2021) 178(12):2412–23. doi: 10.1111/bph.15427

Harrison SA, Bashir MR, Guy CD, Zhou R, Moylan CA, Frias JP, et al. Resmetirom (Mgl-3196) for the treatment of non-alcoholic steatohepatitis: A multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet (London England) (2019) 394(10213):2012–24. doi: 10.1016/s0140-6736(19)32517-6

Harrison SA, Bashir M, Moussa SE, McCarty K, Pablo Frias J, Taub R, et al. Effects of resmetirom on noninvasive endpoints in a 36-week phase 2 active treatment extension study in patients with Nash. Hepatol Commun (2021) 5(4):573–88. doi: 10.1002/hep4.1657

Caddeo A, Kowalik MA, Serra M, Runfola M, Bacci A, Rapposelli S, et al. Tg68, a novel thyroid hormone receptor-B agonist for the treatment of nafld. Int J Mol Sci (2021) 22(23):13105. doi: 10.3390/ijms222313105

Talukdar S, Kharitonenkov A. Fgf19 and Fgf21: In Nash we trust. Mol Metab (2021) 46:101152. doi: 10.1016/j.molmet.2020.101152

Harrison SA, Rinella ME, Abdelmalek MF, Trotter JF, Paredes AH, Arnold HL, et al. Ngm282 for treatment of non-alcoholic steatohepatitis: A multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet (London England) (2018) 391(10126):1174–85. doi: 10.1016/s0140-6736(18)30474-4

Harrison SA, Rossi SJ, Paredes AH, Trotter JF, Bashir MR, Guy CD, et al. Ngm282 improves liver fibrosis and histology in 12 weeks in patients with nonalcoholic steatohepatitis. Hepatology (2020) 71(4):1198–212. doi: 10.1002/hep.30590

Harrison SA, Neff G, Guy CD, Bashir MR, Paredes AH, Frias JP, et al. Efficacy and safety of aldafermin, an engineered Fgf19 analog, in a randomized, double-blind, placebo-controlled trial of patients with nonalcoholic steatohepatitis. Gastroenterology (2021) 160(1):219–31.e1. doi: 10.1053/j.gastro.2020.08.004

Harrison SA, Abdelmalek MF, Neff G, Gunn N, Guy CD, Alkhouri N, et al. Aldafermin in patients with non-alcoholic steatohepatitis (Alpine 2/3): A randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Gastroenterol Hepatol (2022) 7(7):603–16. doi: 10.1016/s2468-1253(22)00017-6

Rinella ME, Trotter JF, Abdelmalek MF, Paredes AH, Connelly MA, Jaros MJ, et al. Rosuvastatin improves the Fgf19 analogue Ngm282-associated lipid changes in patients with non-alcoholic steatohepatitis. J Hepatol (2019) 70(4):735–44. doi: 10.1016/j.jhep.2018.11.032

Ritchie M, Hanouneh IA, Noureddin M, Rolph T, Alkhouri N. Fibroblast growth factor (Fgf)-21 based therapies: A magic bullet for nonalcoholic fatty liver disease (Nafld)? Expert Opin investigat Drugs (2020) 29(2):197–204. doi: 10.1080/13543784.2020.1718104

Charles ED, Neuschwander-Tetri BA, Pablo Frias J, Kundu S, Luo Y, Tirucherai GS, et al. Pegbelfermin (Bms-986036), pegylated Fgf21, in patients with obesity and type 2 diabetes: Results from a randomized phase 2 study. Obes (Silver Spring Md) (2019) 27(1):41–9. doi: 10.1002/oby.22344

Sanyal A, Charles ED, Neuschwander-Tetri BA, Loomba R, Harrison SA, Abdelmalek MF, et al. Pegbelfermin (Bms-986036), a pegylated fibroblast growth factor 21 analogue, in patients with non-alcoholic steatohepatitis: A randomised, double-blind, placebo-controlled, phase 2a trial. Lancet (London England) (2019) 392(10165):2705–17. doi: 10.1016/s0140-6736(18)31785-9

Verzijl CRC, Van De Peppel IP, Struik D, Jonker JW. Pegbelfermin (Bms-986036): An investigational pegylated fibroblast growth factor 21 analogue for the treatment of nonalcoholic steatohepatitis. Expert Opin investigat Drugs (2020) 29(2):125–33. doi: 10.1080/13543784.2020.1708898

Views:

53

Downloads:

20

Published
2025-09-11
Citations
How to Cite
Konrad Strużek, Agnieszka Kwiatkowska, Ewelina Mączka, Wiktor Tracz, Patrycja Świercz, Kinga Teper, Sandra Khiralla-Gawlik, Aleksandra Anna Strzelecka, & Aleksandra Ewa Basak. (2025). NON-ALCOHOLIC FATTY LIVER DISEASE (NAFLD): DISEASE MECHANISMS AND CONTEMPORARY THERAPEUTIC APPROACHES - A LITERATURE REVIEW. International Journal of Innovative Technologies in Social Science, 2(3(47). https://doi.org/10.31435/ijitss.3(47).2025.3662