THE ROLE OF PRECISION MEDICINE AND GENOMICS IN CARDIAC SURGERY
Abstract
Background: Precision medicine, driven by advances in genomics, is reshaping the approach to diagnosis, risk assessment, and treatment planning in cardiac surgery. By analyzing genetic variation and molecular pathways, clinicians can move beyond standardized protocols toward individualized surgical care.
Methods: This review synthesizes recent literature on the integration of genomic technologies - such as whole genome sequencing, gene expression profiling, and pharmacogenomics - into the preoperative, intraoperative, and postoperative phases of cardiac surgery. Sources include peer-reviewed articles, clinical trial data, and translational research reports published over the past 20 years.
Results: Genomic profiling enables improved risk stratification, early detection of hereditary cardiovascular diseases, and identification of genetic biomarkers predictive of surgical outcomes. Pharmacogenomic insights allow optimization of perioperative drug therapy, reducing complications and enhancing recovery. Emerging applications include bioinformatics-driven surgical planning and integration of multi-omic data for real-time decision support. However, challenges remain regarding data interpretation, ethical considerations, and integration into clinical workflows.
Conclusion: Precision medicine and genomics hold significant promise for improving patient-specific outcomes in cardiac surgery. Their successful implementation will require robust clinical evidence, interdisciplinary collaboration, and infrastructure to manage and interpret complex genomic data. Ongoing research is likely to expand their role from risk prediction to fully individualized surgical strategies.
References
Abu-Zeitone, A., Peterson, D. R., Polonsky, B., McNitt, S., & Moss, A. J. (2014). Efficacy of different beta-blockers in the treatment of long QT syndrome. Journal of the American College of Cardiology, 64(13), 1352-1358. https://doi.org/10.1016/j.jacc.2014.05.068
Aittokallio, J., Kauko, A., Vaura, F., Salomaa, V., Kiviniemi, T., FinnGen, Schnabel, R. B., & Niiranen, T. (2022). Polygenic Risk Scores for Predicting Adverse Outcomes After Coronary Revascularization. American Journal of Cardiology, 167, 9-14. https://doi.org/10.1016/j.amjcard.2021.11.046
Andelfinger, G., Marquis, C., Raboisson, M. J., Theoret, Y., Waldmuller, S., Wiegand, G., Gelb, B. D., Zenker, M., Delrue, M. A., & Hofbeck, M. (2019). Hypertrophic Cardiomyopathy in Noonan Syndrome Treated by MEK-Inhibition. Journal of the American College of Cardiology, 73(17), 2237-2239. https://doi.org/10.1016/j.jacc.2019.01.066
Balakrishnan, I. D., Bylstra, Y., Fong, N., Chai, N. B. S., Kam, S., Khoo, C. Y., Chan, L. L. H., Koh, A. S., Tang, H. C., Lim, E., Tan, J. L., Lim, W. K., Pua, C. J., Sim, D., Cook, S. A., Tan, E. S., Yeo, K. K., & Jamuar, S. S. (2024). Advancing precision medicine through the integration of clinical cardiovascular genetics - An Asian perspective. Genet Med Open, 2, 101877. https://doi.org/10.1016/j.gimo.2024.101877
Benson, M. D., Dasgupta, N. R., Rissing, S. M., Smith, J., & Feigenbaum, H. (2017). Safety and efficacy of a TTR specific antisense oligonucleotide in patients with transthyretin amyloid cardiomyopathy. Amyloid, 24(4), 219-225. https://doi.org/10.1080/13506129.2017.1374946
Bhoyar, N., & Nirmal Chandu, H. (2025). Evaluating the impact of pharmacogenomics on postoperative outcomes in cardiovascular surgery patients. Journal of Neonatal Surgery, 14(1S), 95-101. https://doi.org/10.52783/jns.v14.1500
Biernacka, E. K., Osadnik, T., Bilinska, Z. T., Krawczynski, M., Latos-Bielenska, A., Laczmanska, I., Miszczak-Knecht, M., Ploski, R., Poninska, J. K., Prejbisz, A., Rubis, P., Rudnicka, A., Szczaluba, K., Szczygiel, J. A., Wlasienko, P., Wolczenko, A., Zienciuk-Krajka, A., Ziolkowska, L., & Gil, R. (2024). Genetic testing for inherited cardiovascular diseases. A position statement of the Polish Cardiac Society endorsed by Polish Society of Human Genetics and Cardiovascular Patient Communities. Kardiologia Polska, 82(5), 569-593. https://doi.org/10.33963/v.phj.100490
Bonowicz, K., Jerka, D., Piekarska, K., Olagbaju, J., Stapleton, L., Shobowale, M., Bartosinski, A., Lapot, M., Bai, Y., & Gagat, M. (2025). CRISPR-Cas9 in Cardiovascular Medicine: Unlocking New Potential for Treatment. Cells, 14(2). https://doi.org/10.3390/cells14020131
Bouhairie, V. E., & Goldberg, A. C. (2015). Familial hypercholesterolemia. Cardiology Clinics, 33(2), 169-179. https://doi.org/10.1016/j.ccl.2015.01.001
Chahal, C. A. A., Alahdab, F., Asatryan, B., Addison, D., Aung, N., Chung, M. K., Denaxas, S., Dunn, J., Hall, J. L., Pamir, N., Slotwiner, D. J., Vargas, J. D., & Armoundas, A. A. (2025). Data Interoperability and Harmonization in Cardiovascular Genomic and Precision Medicine. Circ Genom Precis Med, 18(3), e004624. https://doi.org/10.1161/CIRCGEN.124.004624
Chaudhry, F., Isherwood, J., Bawa, T., Patel, D., Gurdziel, K., Lanfear, D. E., Ruden, D. M., & Levy, P. D. (2019). Single-Cell RNA Sequencing of the Cardiovascular System: New Looks for Old Diseases. Front Cardiovasc Med, 6, 173. https://doi.org/10.3389/fcvm.2019.00173
Choi, G., Kopplin, L. J., Tester, D. J., Will, M. L., Haglund, C. M., & Ackerman, M. J. (2004). Spectrum and frequency of cardiac channel defects in swimming-triggered arrhythmia syndromes. Circulation, 110(15), 2119-2124. https://doi.org/10.1161/01.CIR.0000144471.98080.CA
Chou, E. L., & Lindsay, M. E. (2020). The genetics of aortopathies: Hereditary thoracic aortic aneurysms and dissections. American Journal of Medical Genetics. Part C: Seminars in Medical Genetics, 184(1), 136-148. https://doi.org/10.1002/ajmg.c.31771
Dainis, A. M., & Ashley, E. A. (2018). Cardiovascular Precision Medicine in the Genomics Era. JACC Basic Transl Sci, 3(2), 313-326. https://doi.org/10.1016/j.jacbts.2018.01.003
de Boer, R. A., Heymans, S., Backs, J., Carrier, L., Coats, A. J. S., Dimmeler, S., Eschenhagen, T., Filippatos, G., Gepstein, L., Hulot, J. S., Knoll, R., Kupatt, C., Linke, W. A., Seidman, C. E., Tocchetti, C. G., van der Velden, J., Walsh, R., Seferovic, P. M., & Thum, T. (2022). Targeted therapies in genetic dilated and hypertrophic cardiomyopathies: from molecular mechanisms to therapeutic targets. A position paper from the Heart Failure Association (HFA) and the Working Group on Myocardial Function of the European Society of Cardiology (ESC). European Journal of Heart Failure, 24(3), 406-420. https://doi.org/10.1002/ejhf.2414
Delpierre, C., & Lefevre, T. (2023). Precision and personalized medicine: What their current definition says and silences about the model of health they promote. Implication for the development of personalized health. Front Sociol, 8, 1112159. https://doi.org/10.3389/fsoc.2023.1112159
El Dib, R., Gomaa, H., Ortiz, A., Politei, J., Kapoor, A., & Barreto, F. (2017). Enzyme replacement therapy for Anderson-Fabry disease: A complementary overview of a Cochrane publication through a linear regression and a pooled analysis of proportions from cohort studies. PloS One, 12(3), e0173358. https://doi.org/10.1371/journal.pone.0173358
Franken, R., Teixido-Tura, G., Brion, M., Forteza, A., Rodriguez-Palomares, J., Gutierrez, L., Garcia Dorado, D., Pals, G., Mulder, B. J., & Evangelista, A. (2017). Relationship between fibrillin-1 genotype and severity of cardiovascular involvement in Marfan syndrome. Heart, 103(22), 1795-1799. https://doi.org/10.1136/heartjnl-2016-310631
Gadhachanda, K. R., Marsool Marsool, M. D., Bozorgi, A., Ameen, D., Nayak, S. S., Nasrollahizadeh, A., Alotaibi, A., Farzaei, A., Keivanlou, M. H., Hassanipour, S., Amini-Salehi, E., & Jonnalagadda, A. K. (2025). Artificial intelligence in cardiovascular procedures: a bibliometric and visual analysis study. Ann Med Surg (Lond), 87(4), 2187-2203. https://doi.org/10.1097/MS9.0000000000003112
Garg, V., Muth, A. N., Ransom, J. F., Schluterman, M. K., Barnes, R., King, I. N., Grossfeld, P. D., & Srivastava, D. (2005). Mutations in NOTCH1 cause aortic valve disease. Nature, 437(7056), 270-274. https://doi.org/10.1038/nature03940
Garrod, A. S., Zahid, M., Tian, X., Francis, R. J., Khalifa, O., Devine, W., Gabriel, G. C., Leatherbury, L., & Lo, C. W. (2014). Airway ciliary dysfunction and sinopulmonary symptoms in patients with congenital heart disease. Ann Am Thorac Soc, 11(9), 1426-1432. https://doi.org/10.1513/AnnalsATS.201405-222OC
Geddes, G. C., Przybylowski, L. F., 3rd, & Ware, S. M. (2020). Variants of significance: medical genetics and surgical outcomes in congenital heart disease. Current Opinion in Pediatrics, 32(6), 730-738. https://doi.org/10.1097/MOP.0000000000000949
Gelb, B. D. (2022). Prospects for precision genetic medicine in congenital heart disease. Current Opinion in Genetics and Development, 77, 101983. https://doi.org/10.1016/j.gde.2022.101983
Giudicessi, J. R., & Ackerman, M. J. (2013). Genotype- and phenotype-guided management of congenital long QT syndrome. Current Problems in Cardiology, 38(10), 417-455. https://doi.org/10.1016/j.cpcardiol.2013.08.001
Gu, Y., Zhou, Y., Ju, S., Liu, X., Zhang, Z., Guo, J., Gao, J., Zang, J., Sun, H., Chen, Q., Wang, J., Xu, J., Xu, Y., Chen, Y., Guo, Y., Dai, J., Ma, H., Wang, C., Jin, G., . . . Hu, Z. (2022). Multi-omics profiling visualizes dynamics of cardiac development and functions. Cell Reports, 41(13), 111891. https://doi.org/10.1016/j.celrep.2022.111891
Harper, A. R., Parikh, V. N., Goldfeder, R. L., Caleshu, C., & Ashley, E. A. (2017). Delivering Clinical Grade Sequencing and Genetic Test Interpretation for Cardiovascular Medicine. Circulation: Cardiovascular Genetics, 10(2). https://doi.org/10.1161/CIRCGENETICS.116.001221
Hasbani, N. R., Ligthart, S., Brown, M. R., Heath, A. S., Bebo, A., Ashley, K. E., Boerwinkle, E., Morrison, A. C., Folsom, A. R., Aguilar, D., & de Vries, P. S. (2022). American Heart Association's Life's Simple 7: Lifestyle Recommendations, Polygenic Risk, and Lifetime Risk of Coronary Heart Disease. Circulation, 145(11), 808-818. https://doi.org/10.1161/CIRCULATIONAHA.121.053730
Ilic, N., Krasic, S., Maric, N., Gasic, V., Krstic, J., Cvetkovic, D., Miljkovic, V., Zec, B., Maver, A., Vukomanovic, V., & Sarajlija, A. (2024). Noonan Syndrome: Relation of Genotype to Cardiovascular Phenotype-A Multi-Center Retrospective Study. Genes (Basel), 15(11). https://doi.org/10.3390/genes15111463
Jain, K. K. (2017). Personalized Management of Cardiovascular Disorders. Medical Principles and Practice, 26(5), 399-414. https://doi.org/10.1159/000481403
Jones, L. K., Chen, N., Hassen, D. A., Betts, M. N., Klinger, T., Hartzel, D. N., Veenstra, D. L., Spencer, S. J., Snyder, S. R., Peterson, J. F., Schlieder, V., Sturm, A. C., Gidding, S. S., Williams, M. S., & Hao, J. (2022). Impact of a Population Genomic Screening Program on Health Behaviors Related to Familial Hypercholesterolemia Risk Reduction. Circ Genom Precis Med, 15(5), e003549. https://doi.org/10.1161/CIRCGEN.121.003549
Kertai, M. D., Li, Y. J., Ji, Y., Qi, W., Lombard, F. W., Shah, S. H., Kraus, W. E., Stafford-Smith, M., Newman, M. F., Milano, C. A., Waldron, N., Podgoreanu, M. V., Mathew, J. P., Duke Perioperative, G., & Safety Outcomes Investigative, T. (2015). Genome-wide association study of new-onset atrial fibrillation after coronary artery bypass grafting surgery. American Heart Journal, 170(3), 580-590 e528. https://doi.org/10.1016/j.ahj.2015.06.009
Kertai, M. D., Li, Y. J., Li, Y. W., Ji, Y., Alexander, J., Newman, M. F., Smith, P. K., Joseph, D., Mathew, J. P., Podgoreanu, M. V., Duke Perioperative, G., & Safety Outcomes Investigative, T. (2015). Genome-wide association study of perioperative myocardial infarction after coronary artery bypass surgery. BMJ Open, 5(5), e006920. https://doi.org/10.1136/bmjopen-2014-006920
Kostiuk, V., Brownstein, A. J., Ziganshin, B. A., & Elefteriades, J. A. (2018). Genetic testing to modulate when to operate in thoracic aortic disease. Journal of Visualized Surgery, 4, 193-193. https://doi.org/10.21037/jovs.2018.07.14
Krane, M., Dressen, M., Santamaria, G., My, I., Schneider, C. M., Dorn, T., Laue, S., Mastantuono, E., Berutti, R., Rawat, H., Gilsbach, R., Schneider, P., Lahm, H., Schwarz, S., Doppler, S. A., Paige, S., Puluca, N., Doll, S., Neb, I., . . . Moretti, A. (2021). Sequential Defects in Cardiac Lineage Commitment and Maturation Cause Hypoplastic Left Heart Syndrome. Circulation, 144(17), 1409-1428. https://doi.org/10.1161/CIRCULATIONAHA.121.056198
Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., & Kitai, T. (2017). Artificial Intelligence in Precision Cardiovascular Medicine. Journal of the American College of Cardiology, 69(21), 2657-2664. https://doi.org/10.1016/j.jacc.2017.03.571
Kullo, I. J., Jouni, H., Austin, E. E., Brown, S. A., Kruisselbrink, T. M., Isseh, I. N., Haddad, R. A., Marroush, T. S., Shameer, K., Olson, J. E., Broeckel, U., Green, R. C., Schaid, D. J., Montori, V. M., & Bailey, K. R. (2016). Incorporating a Genetic Risk Score Into Coronary Heart Disease Risk Estimates: Effect on Low-Density Lipoprotein Cholesterol Levels (the MI-GENES Clinical Trial). Circulation, 133(12), 1181-1188. https://doi.org/10.1161/CIRCULATIONAHA.115.020109
Landstrom, A. P., Kim, J. J., Gelb, B. D., Helm, B. M., Kannankeril, P. J., Semsarian, C., Sturm, A. C., Tristani-Firouzi, M., Ware, S. M., American Heart Association Council on, G., Precision, M., Council on Lifelong Congenital Heart, D., Heart Health in the, Y., Council on Arteriosclerosis, T., Vascular, B., Council on, L., & Cardiometabolic, H. (2021). Genetic Testing for Heritable Cardiovascular Diseases in Pediatric Patients: A Scientific Statement From the American Heart Association. Circ Genom Precis Med, 14(5), e000086. https://doi.org/10.1161/HCG.0000000000000086
Leivaditis, V., Beltsios, E., Papatriantafyllou, A., Grapatsas, K., Mulita, F., Kontodimopoulos, N., Baikoussis, N. G., Tchabashvili, L., Tasios, K., Maroulis, I., Dahm, M., & Koletsis, E. (2025). Artificial Intelligence in Cardiac Surgery: Transforming Outcomes and Shaping the Future. Clin Pract, 15(1). https://doi.org/10.3390/clinpract15010017
Marian, A. J., van Rooij, E., & Roberts, R. (2016). Genetics and Genomics of Single-Gene Cardiovascular Diseases: Common Hereditary Cardiomyopathies as Prototypes of Single-Gene Disorders. Journal of the American College of Cardiology, 68(25), 2831-2849. https://doi.org/10.1016/j.jacc.2016.09.968
Mazzanti, A., Maragna, R., Faragli, A., Monteforte, N., Bloise, R., Memmi, M., Novelli, V., Baiardi, P., Bagnardi, V., Etheridge, S. P., Napolitano, C., & Priori, S. G. (2016). Gene-Specific Therapy With Mexiletine Reduces Arrhythmic Events in Patients With Long QT Syndrome Type 3. Journal of the American College of Cardiology, 67(9), 1053-1058. https://doi.org/10.1016/j.jacc.2015.12.033
McDonough, C. W. (2021). Pharmacogenomics in Cardiovascular Diseases. Curr Protoc, 1(7), e189. https://doi.org/10.1002/cpz1.189
Mizuta, M. H., & Santos, R. D. (2025). Functional Testing of Familial Hypercholesterolemia-Related Variants: From Bench to Clinics. JACC Basic Transl Sci, 10(2), 184-186. https://doi.org/10.1016/j.jacbts.2024.11.016
Moore, B. M., Roston, T. M., Laksman, Z., & Krahn, A. D. (2025). Updates on inherited arrhythmia syndromes (Brugada syndrome, long QT syndrome, CPVT, ARVC). Progress in Cardiovascular Diseases. https://doi.org/10.1016/j.pcad.2025.06.002
Mudd-Martin, G., Cirino, A. L., Barcelona, V., Fox, K., Hudson, M., Sun, Y. V., Taylor, J. Y., Cameron, V. A., American Heart Association Council on, G., Precision, M., Council on, C., Stroke, N., & Council on Clinical, C. (2021). Considerations for Cardiovascular Genetic and Genomic Research With Marginalized Racial and Ethnic Groups and Indigenous Peoples: A Scientific Statement From the American Heart Association. Circ Genom Precis Med, 14(4), e000084. https://doi.org/10.1161/HCG.0000000000000084
Musunuru, K., Hershberger, R. E., Day, S. M., Klinedinst, N. J., Landstrom, A. P., Parikh, V. N., Prakash, S., Semsarian, C., Sturm, A. C., American Heart Association Council on, G., Precision, M., Council on Arteriosclerosis, T., Vascular, B., Council on, C., Stroke, N., & Council on Clinical, C. (2020). Genetic Testing for Inherited Cardiovascular Diseases: A Scientific Statement From the American Heart Association. Circ Genom Precis Med, 13(4), e000067. https://doi.org/10.1161/HCG.0000000000000067
Naderian, M., Norland, K., Schaid, D. J., & Kullo, I. J. (2025). Development and Evaluation of a Comprehensive Prediction Model for Incident Coronary Heart Disease Using Genetic, Social, and Lifestyle-Psychological Factors: A Prospective Analysis of the UK Biobank. Annals of Internal Medicine, 178(1), 1-10. https://doi.org/10.7326/ANNALS-24-00716
Nagatomo, T., January, C. T., Ye, B., Abe, H., Nakashima, Y., & Makielski, J. C. (2002). Rate-dependent QT shortening mechanism for the LQT3 deltaKPQ mutant. Cardiovascular Research, 54(3), 624-629. https://doi.org/10.1016/s0008-6363(02)00265-1
Nappi, F. (2024). In-Depth Genomic Analysis: The New Challenge in Congenital Heart Disease. International Journal of Molecular Sciences, 25(3). https://doi.org/10.3390/ijms25031734
Nigam, V., & Srivastava, D. (2009). Notch1 represses osteogenic pathways in aortic valve cells. Journal of Molecular and Cellular Cardiology, 47(6), 828-834. https://doi.org/10.1016/j.yjmcc.2009.08.008
Nomura, S., & Ono, M. (2023). Precision and genomic medicine for dilated and hypertrophic cardiomyopathy. Front Cardiovasc Med, 10, 1137498. https://doi.org/10.3389/fcvm.2023.1137498
Olawade, D. B., Aderinto, N., Olatunji, G., Kokori, E., David-Olawade, A. C., & Hadi, M. (2024). Advancements and applications of Artificial Intelligence in cardiology: Current trends and future prospects. Journal of Medicine, Surgery, and Public Health, 3. https://doi.org/10.1016/j.glmedi.2024.100109
Palaparthi, E. C., Aditya Reddy, P., Padala, T., Sri Venkata Mahi Karthika, K., Paka, R., Ami Reddy, V., Ayub, S., Khyati Sri, V., Rebanth Nandan, V., Patnaik, P. K., Medabala, T., & Sayana, S. B. (2025). The Rise of Personalized Medicine in Heart Failure Management: A Narrative Review. Cureus, 17(5), e83731. https://doi.org/10.7759/cureus.83731
Perez-Riera, A. R., Barbosa-Barros, R., Daminello Raimundo, R., da Costa de Rezende Barbosa, M. P., Esposito Sorpreso, I. C., & de Abreu, L. C. (2018). The congenital long QT syndrome Type 3: An update. Indian Pacing and Electrophysiology Journal, 18(1), 25-35. https://doi.org/10.1016/j.ipej.2017.10.011
Schwartz, P. J., Crotti, L., & Insolia, R. (2012). Long-QT syndrome: from genetics to management. Circ Arrhythm Electrophysiol, 5(4), 868-877. https://doi.org/10.1161/CIRCEP.111.962019
Sethi, Y., Patel, N., Kaka, N., Kaiwan, O., Kar, J., Moinuddin, A., Goel, A., Chopra, H., & Cavalu, S. (2023). Precision Medicine and the future of Cardiovascular Diseases: A Clinically Oriented Comprehensive Review. J Clin Med, 12(5). https://doi.org/10.3390/jcm12051799
Uffelmann, E., Huang, Q. Q., Munung, N. S., de Vries, J., Okada, Y., Martin, A. R., Martin, H. C., Lappalainen, T., & Posthuma, D. (2021). Genome-wide association studies. Nature Reviews Methods Primers, 1(1). https://doi.org/10.1038/s43586-021-00056-9
van Capelle, C. I., Poelman, E., Frohn-Mulder, I. M., Koopman, L. P., van den Hout, J. M. P., Regal, L., Cools, B., Helbing, W. A., & van der Ploeg, A. T. (2018). Cardiac outcome in classic infantile Pompe disease after 13 years of treatment with recombinant human acid alpha-glucosidase. International Journal of Cardiology, 269, 104-110. https://doi.org/10.1016/j.ijcard.2018.07.091
Verdonschot, J. A. J., Hazebroek, M. R., Ware, J. S., Prasad, S. K., & Heymans, S. R. B. (2019). Role of Targeted Therapy in Dilated Cardiomyopathy: The Challenging Road Toward a Personalized Approach. J Am Heart Assoc, 8(11), e012514. https://doi.org/10.1161/JAHA.119.012514
Viigimaa, M., Jurisson, M., Pisarev, H., Kalda, R., Alavere, H., Irs, A., Saar, A., Fischer, K., Lall, K., Kruuv-Kao, K., Mars, N., Widen, E., Ripatti, S., & Metspalu, A. (2022). Effectiveness and feasibility of cardiovascular disease personalized prevention on high polygenic risk score subjects: a randomized controlled pilot study. Eur Heart J Open, 2(6), oeac079. https://doi.org/10.1093/ehjopen/oeac079
Watkins, W. S., Hernandez, E. J., Miller, T. A., Blue, N. R., Zimmerman, R. M., Griffiths, E. R., Frise, E., Bernstein, D., Boskovski, M. T., Brueckner, M., Chung, W. K., Gaynor, J. W., Gelb, B. D., Goldmuntz, E., Gruber, P. J., Newburger, J. W., Roberts, A. E., Morton, S. U., Mayer, J. E., Jr., . . . Tristani-Firouzi, M. (2025). Genome sequencing is critical for forecasting outcomes following congenital cardiac surgery. Nat Commun, 16(1), 6365. https://doi.org/10.1038/s41467-025-61625-0
Wilde, A. A., Moss, A. J., Kaufman, E. S., Shimizu, W., Peterson, D. R., Benhorin, J., Lopes, C., Towbin, J. A., Spazzolini, C., Crotti, L., Zareba, W., Goldenberg, I., Kanters, J. K., Robinson, J. L., Qi, M., Hofman, N., Tester, D. J., Bezzina, C. R., Alders, M., . . . Ackerman, M. J. (2016). Clinical Aspects of Type 3 Long-QT Syndrome: An International Multicenter Study. Circulation, 134(12), 872-882. https://doi.org/10.1161/CIRCULATIONAHA.116.021823
Wilde, A. A. M., Amin, A. S., & Postema, P. G. (2022). Diagnosis, management and therapeutic strategies for congenital long QT syndrome. Heart, 108(5), 332-338. https://doi.org/10.1136/heartjnl-2020-318259
Yu, X., Yang, X., & Cao, J. (2023). Application of Single-Cell Genomics in Cardiovascular Research. Cardiol Ther, 12(1), 101-125. https://doi.org/10.1007/s40119-023-00303-y
Zhan, C., Tang, T., Wu, E., Zhang, Y., He, M., Wu, R., Bi, C., Wang, J., Zhang, Y., & Shen, B. (2023). From multi-omics approaches to personalized medicine in myocardial infarction. Front Cardiovasc Med, 10, 1250340. https://doi.org/10.3389/fcvm.2023.1250340
Views:
30
Downloads:
10
Copyright (c) 2025 Michał Bereza, Kacper Kmieć, Edyta Szymańska, Mateusz Dembiński, Julia Prabucka-Marciniak, Patrycja Fiertek, Aleksandra Misarko, Hubert Rycyk, Jakub Pysiewicz, Marlena Rycyk

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.