BIOMARKERS IN VASCULAR SURGERY: PREDICTING GRAFT FAILURE AND RESTENOSIS

Keywords: Biomarkers, Vascular Surgery, Peripheral Artery Disease ( PAD), Inflammatory Markers, Vascular Graft Failure, C- Reactive Protein (CRP)

Abstract

Vascular diseases are a major source of global morbidity and mortality, often requiring surgical intervention, but the long-term outcomes are frequently compromised by complications like graft failure and restenosis. Since traditional imaging methods often detect these issues only at an advanced stage, there is a critical need for more precise and earlier risk prediction tools. This comprehensive narrative review synthesizes existing literature on the predictive value of circulating and tissue-based biomarkers for these adverse outcomes.

The study systematically examined major electronic databases including PubMed, Scopus, and Web of Science, utilizing keywords related to vascular surgery, outcomes (e.g., graft failure, restenosis), and biomarkers. The identified biomarkers were categorized into four principal groups: inflammatory, lipid-related, genetic, and novel/emerging markers.

The review found that elevated levels of inflammatory markers—such as high-sensitivity C-reactive protein (hs-CRP) and various interleukins (IL-6, IL-1β, TNF-α, IL-18, IL-33)—are strongly associated with an increased risk of graft failure and restenosis. Conversely, anti-inflammatory interleukins like IL-10 and IL-19 were found to correlate with a reduced risk. Furthermore, an unfavorable lipid profile (high LDL, low HDL, or an elevated LDL/HDL ratio) was consistently linked to a higher incidence of these complications. The review also highlights the promising potential of genetic markers, such as specific single nucleotide polymorphisms (SNPs), and novel biomarkers like non-coding RNAs in developing personalized treatment strategies.

The findings suggest that incorporating biomarker panels into routine clinical practice could significantly enhance preoperative risk stratification, enabling tailored perioperative therapy and more effective postoperative surveillance. By allowing for the early detection of biological evidence of graft compromise, this precision-medicine model has the potential to substantially improve long-term patient outcomes in vascular surgery.

References

Aday, A. W., & Matsushita, K. (2021). Epidemiology of Peripheral Artery Disease and Polyvascular Disease. Circ Res, 128(12), 1818-1832. https://doi.org/10.1161/circresaha.121.318535

Araújo, P. V., Ribeiro, M. S., Dalio, M. B., Rocha, L. A., Viaro, F., Dellalibera Joviliano, R., Piccinato, C. E., Évora, P. R., & Joviliano, E. E. (2015). Interleukins and inflammatory markers in in-stent restenosis after femoral percutaneous transluminal angioplasty. Ann Vasc Surg, 29(4), 731-737. https://doi.org/10.1016/j.avsg.2014.12.006

Autieri, M. V. (2018). IL-19 and Other IL-20 Family Member Cytokines in Vascular Inflammatory Diseases. Frontiers in Immunology, 9, 700. https://doi.org/10.3389/fimmu.2018.00700

Böse, D., Leineweber, K., Konorza, T., Zahn, A., Bröcker-Preuss, M., Mann, K., Haude, M., Erbel, R., & Heusch, G. (2007). Release of TNF-alpha during stent implantation into saphenous vein aortocoronary bypass grafts and its relation to plaque extrusion and restenosis. Am J Physiol Heart Circ Physiol, 292(5), H2295-2299. https://doi.org/10.1152/ajpheart.01116.2006

Calik, A. N., Inan, D., Karatas, M. B., Akdeniz, E., Genc, D., Canga, Y., Cinar, T., & Emre, A. (2020). The association of preprocedural C-reactive protein/albumin ratio with in-stent restenosis in patients undergoing iliac artery stenting. J Cardiovasc Thorac Res, 12(3), 179-184. https://doi.org/10.34172/jcvtr.2020.31

Chamberlain, J., Gunn, J., Francis, S., Holt, C., & Crossman, D. (1999). Temporal and spatial distribution of interleukin-1 beta in balloon injured porcine coronary arteries. Cardiovascular Research, 44(1), 156-165. https://doi.org/10.1016/s0008-6363(99)00175-3

Demyanets, S., Tentzeris, I., Jarai, R., Katsaros, K. M., Farhan, S., Wonnerth, A., Weiss, T. W., Wojta, J., Speidl, W. S., & Huber, K. (2014). An increase of interleukin-33 serum levels after coronary stent implantation is associated with coronary in-stent restenosis. Cytokine, 67(2), 65-70. https://doi.org/10.1016/j.cyto.2014.02.014

Di, X., Han, W., Liu, C. W., Ni, L., & Zhang, R. (2021). A systematic review and meta-analysis on the association between C-reactive protein levels and adverse limb events after revascularization in patients with peripheral arterial disease. Journal of Vascular Surgery, 74(1), 317-326. https://doi.org/10.1016/j.jvs.2021.02.026

Ding, H. X., Ma, H. F., Xing, N., Hou, L., Zhou, C. X., Du, Y. P., & Wang, F. J. (2021). Five-year follow-up observation of interventional therapy for lower extremity vascular disease in type 2 diabetes and analysis of risk factors for restenosis. J Diabetes, 13(2), 134-142. https://doi.org/10.1111/1753-0407.13094

Efovi, D., & Xiao, Q. (2022). Noncoding RNAs in Vascular Cell Biology and Restenosis. Biology (Basel), 12(1). https://doi.org/10.3390/biology12010024

Elsaka, O. (2024). Novel Biomarkers in Vascular Diseases: From Discovery to Clinical Translation. Indian Journal of Vascular and Endovascular Surgery, 11(3), 142-151. https://doi.org/10.4103/ijves.ijves_42_24

England, R. N., & Autieri, M. V. (2012). Anti-inflammatory effects of interleukin-19 in vascular disease. Int J Inflam, 2012, 253583. https://doi.org/10.1155/2012/253583

Gareri, C., De Rosa, S., & Indolfi, C. (2016). MicroRNAs for Restenosis and Thrombosis After Vascular Injury. Circulation Research, 118(7), 1170-1184. https://doi.org/10.1161/CIRCRESAHA.115.308237

Ghali, J. K., Massie, B. M., Mann, D. L., & Rich, M. W. (2010). Heart failure guidelines, performance measures, and the practice of medicine: mind the gap. Journal of the American College of Cardiology, 56(25), 2077-2080. https://doi.org/10.1016/j.jacc.2010.07.013

Golledge, J., Rowbotham, S., Velu, R., Quigley, F., Jenkins, J., Bourke, M., Bourke, B., Thanigaimani, S., Chan, D. C., & Watts, G. F. (2020). Association of Serum Lipoprotein (a) With the Requirement for a Peripheral Artery Operation and the Incidence of Major Adverse Cardiovascular Events in People With Peripheral Artery Disease. J Am Heart Assoc, 9(6), e015355. https://doi.org/10.1161/JAHA.119.015355

Guo, S., Zhang, Z., Wang, L., Yuan, L., Bao, J., Zhou, J., & Jing, Z. (2020). Six-month results of stenting of the femoropopliteal artery and predictive value of interleukin-6: Comparison with high-sensitivity C-reactive protein. Vascular, 28(6), 715-721. https://doi.org/10.1177/1708538120921005

Hinagata, J., Kakutani, M., Fujii, T., Naruko, T., Inoue, N., Fujita, Y., Mehta, J. L., Ueda, M., & Sawamura, T. (2006). Oxidized LDL receptor LOX-1 is involved in neointimal hyperplasia after balloon arterial injury in a rat model. Cardiovasc Res, 69(1), 263-271. https://doi.org/10.1016/j.cardiores.2005.08.013

Hiramoto, J. S., Owens, C. D., Kim, J. M., Boscardin, J., Belkin, M., Creager, M. A., & Conte, M. S. (2012). Sex-based differences in the inflammatory profile of peripheral artery disease and the association with primary patency of lower extremity vein bypass grafts. Journal of Vascular Surgery, 56(2), 387-395; discussion 395. https://doi.org/10.1016/j.jvs.2012.01.059

Ho, K. J., Owens, C. D., Longo, T., Sui, X. X., Ifantides, C., & Conte, M. S. (2008). C-reactive protein and vein graft disease: evidence for a direct effect on smooth muscle cell phenotype via modulation of PDGF receptor-beta. American Journal of Physiology: Heart and Circulatory Physiology, 295(3), H1132-H1140. https://doi.org/10.1152/ajpheart.00079.2008

Indolfi, C., Iaconetti, C., Gareri, C., Polimeni, A., & De Rosa, S. (2019). Non-coding RNAs in vascular remodeling and restenosis. Vascular Pharmacology, 114, 49-63. https://doi.org/10.1016/j.vph.2018.10.006

Jawitz, O. K., Gulack, B. C., Brennan, J. M., Thibault, D. P., Wang, A., O'Brien, S. M., Schroder, J. N., Gaca, J. G., & Smith, P. K. (2020). Association of postoperative complications and outcomes following coronary artery bypass grafting. Am Heart J, 222, 220-228. https://doi.org/10.1016/j.ahj.2020.02.002

Jiang, H., Liu, W., Liu, Y., & Cao, F. (2015). High levels of HB-EGF and interleukin-18 are associated with a high risk of in-stent restenosis. Anatol J Cardiol, 15(11), 907-912. https://doi.org/10.5152/akd.2015.5798

Jones, D. W., Schanzer, A., Zhao, Y., MacKenzie, T. A., Nolan, B. W., Conte, M. S., & Goodney, P. P. (2013). Growing impact of restenosis on the surgical treatment of peripheral arterial disease. J Am Heart Assoc, 2(6), e000345. https://doi.org/10.1161/jaha.113.000345

Lane, T. R. A., Metcalfe, M. J., Narayanan, S., & Davies, A. H. (2011). Post-operative Surveillance after Open Peripheral Arterial Surgery. European Journal of Vascular and Endovascular Surgery, 42(1), 59-77. https://doi.org/https://doi.org/10.1016/j.ejvs.2011.03.023

Leal, T. P., Pinto, M., Hasselmann, G., Lammoglia, B. C., Trevise, L. A., & Salles Rosa Neto, N. (2023). Long-term patency of aorto-biiliac endoprosthesis for critical lower limb ischaemia in Takayasu arteritis after complicated angioplasty with a drug-coated balloon: Effect of dual antiplatelet therapy combined with tocilizumab. Mod Rheumatol Case Rep, 8(1), 101-106. https://doi.org/10.1093/mrcr/rxad030

Lian, W., Nie, H., Yuan, Y., Wang, K., Chen, W., & Ding, L. (2021). Clinical Significance of Endothelin-1 And C Reaction Protein in Restenosis After the Intervention of Lower Extremity Arteriosclerosis Obliterans. Journal of Investigative Surgery, 34(7), 765-770. https://doi.org/10.1080/08941939.2019.1690600

Liang, J. J., Xue, W., Lou, L. Z., Liu, C., Wang, Z. F., Li, Q. G., & Huang, S. H. (2014). Correlation of restenosis after rabbit carotid endarterectomy and inflammatory cytokines. Asian Pac J Trop Med, 7(3), 231-236. https://doi.org/10.1016/s1995-7645(14)60027-4

Liu, S., Yang, Y., Jiang, S., Tang, N., Tian, J., Ponnusamy, M., Tariq, M. A., Lian, Z., Xin, H., & Yu, T. (2018). Understanding the role of non-coding RNA (ncRNA) in stent restenosis. Atherosclerosis, 272, 153-161. https://doi.org/10.1016/j.atherosclerosis.2018.03.036

Maffia, P., Grassia, G., Di Meglio, P., Carnuccio, R., Berrino, L., Garside, P., Ianaro, A., & Ialenti, A. (2006). Neutralization of interleukin-18 inhibits neointimal formation in a rat model of vascular injury. Circulation, 114(5), 430-437. https://doi.org/10.1161/CIRCULATIONAHA.105.602714

Marques, J. C., Marques, M. F., Ribeiro, H., Neves, A. P., Zlatanovic, P., & Neves, J. R. (2025). The Impact of Elevated Lipoprotein (a) Levels on Postoperative Outcomes in Carotid Endarterectomy: A Systematic Review. J Clin Med, 14(7). https://doi.org/10.3390/jcm14072253

Meng, H., Zhou, X., Li, L., Liu, Y., Liu, Y., & Zhang, Y. (2024). Monocyte to high-density lipoprotein cholesterol ratio predicts restenosis of drug-eluting stents in patients with unstable angina pectoris. Sci Rep, 14(1), 30175. https://doi.org/10.1038/s41598-024-81818-9

Nan, J., Meng, S., Hu, H., Jia, R., Chen, C., Peng, J., & Jin, Z. (2020). The Predictive Value of Monocyte Count to High-Density Lipoprotein Cholesterol Ratio in Restenosis After Drug-Eluting Stent Implantation. Int J Gen Med, 13, 1255-1263. https://doi.org/10.2147/ijgm.S275202

Naruko, T., Ueda, M., Ehara, S., Itoh, A., Haze, K., Shirai, N., Ikura, Y., Ohsawa, M., Itabe, H., Kobayashi, Y., Yamagishi, H., Yoshiyama, M., Yoshikawa, J., & Becker, A. E. (2006). Persistent high levels of plasma oxidized low-density lipoprotein after acute myocardial infarction predict stent restenosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 26(4), 877-883. https://doi.org/10.1161/01.ATV.0000209886.31510.7f

Oemar, B. S. (1999). Is interleukin-1 beta a triggering factor for restenosis? Cardiovascular Research, 44(1), 17-19. https://doi.org/10.1016/s0008-6363(99)00215-1

Owens, C. D., Ridker, P. M., Belkin, M., Hamdan, A. D., Pomposelli, F., Logerfo, F., Creager, M. A., & Conte, M. S. (2007). Elevated C-reactive protein levels are associated with postoperative events in patients undergoing lower extremity vein bypass surgery. Journal of Vascular Surgery, 45(1), 2-9; discussion 9. https://doi.org/10.1016/j.jvs.2006.08.048

Parolari, A., Poggio, P., Myasoedova, V., Songia, P., Bonalumi, G., Pilozzi, A., Pacini, D., Alamanni, F., & Tremoli, E. (2015). Biomarkers in Coronary Artery Bypass Surgery: Ready for Prime Time and Outcome Prediction? Front Cardiovasc Med, 2, 39. https://doi.org/10.3389/fcvm.2015.00039

Qin, S. Y., Liu, J., Jiang, H. X., Hu, B. L., Zhou, Y., & Olkkonen, V. M. (2013). Association between baseline lipoprotein (a) levels and restenosis after coronary stenting: meta-analysis of 9 cohort studies. Atherosclerosis, 227(2), 360-366. https://doi.org/10.1016/j.atherosclerosis.2013.01.014

Ridker, P. M., Cushman, M., Stampfer, M. J., Tracy, R. P., & Hennekens, C. H. (1997). Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. New England Journal of Medicine, 336(14), 973-979. https://doi.org/10.1056/NEJM199704033361401

Ridker, P. M., Everett, B. M., Thuren, T., MacFadyen, J. G., Chang, W. H., Ballantyne, C., Fonseca, F., Nicolau, J., Koenig, W., Anker, S. D., Kastelein, J. J. P., Cornel, J. H., Pais, P., Pella, D., Genest, J., Cifkova, R., Lorenzatti, A., Forster, T., Kobalava, Z., . . . Group, C. T. (2017). Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. New England Journal of Medicine, 377(12), 1119-1131. https://doi.org/10.1056/NEJMoa1707914

Ryu, J. C., Bae, J. H., Ha, S. H., Kwon, B., Song, Y., Lee, D. H., Kim, B. J., Kang, D. W., Kwon, S. U., Kim, J. S., & Chang, J. Y. (2023). Association between lipid profile changes and risk of in-stent restenosis in ischemic stroke patients with intracranial stenosis: A retrospective cohort study. PLoS One, 18(5), e0284749. https://doi.org/10.1371/journal.pone.0284749

Schillinger, M., & Minar, E. (2005). Restenosis after percutaneous angioplasty: the role of vascular inflammation. Vasc Health Risk Manag, 1(1), 73-78. https://doi.org/10.2147/vhrm.1.1.73.58932

Segev, A., Strauss, B. H., Witztum, J. L., Lau, H. K., & Tsimikas, S. (2005). Relationship of a comprehensive panel of plasma oxidized low-density lipoprotein markers to angiographic restenosis in patients undergoing percutaneous coronary intervention for stable angina. American Heart Journal, 150(5), 1007-1014. https://doi.org/10.1016/j.ahj.2004.12.008

Shimokawa, H., Ito, A., Fukumoto, Y., Kadokami, T., Nakaike, R., Sakata, M., Takayanagi, T., Egashira, K., & Takeshita, A. (1996). Chronic treatment with interleukin-1 beta induces coronary intimal lesions and vasospastic responses in pigs in vivo. The role of platelet-derived growth factor. Journal of Clinical Investigation, 97(3), 769-776. https://doi.org/10.1172/JCI118476

Takasaki, A., Kurita, T., Hirota, Y., Uno, K., Kirii, Y., Ichikawa, M., Ishiyama, M., Terashima, M., Nakajima, A., & Dohi, K. (2023). Isolated Coronary Arteritis Treated With FDG-PET/CT-Guided Immunosuppressant to Break the Vicious Cycle of In-Stent Restenosis. JACC Case Rep, 28, 102102. https://doi.org/10.1016/j.jaccas.2023.102102

Tok, D., Turak, O., Yayla, Ç., Ozcan, F., Tok, D., & Çağlı, K. (2016). Monocyte to HDL ratio in prediction of BMS restenosis in subjects with stable and unstable angina pectoris. Biomark Med, 10(8), 853-860. https://doi.org/10.2217/bmm-2016-0071

Ucar, F. M. (2016). A potential marker of bare metal stent restenosis: monocyte count - to- HDL cholesterol ratio. BMC Cardiovasc Disord, 16(1), 186. https://doi.org/10.1186/s12872-016-0367-3

Uciechowski, P., & Dempke, W. C. M. (2020). Interleukin-6: A Masterplayer in the Cytokine Network. Oncology, 98(3), 131-137. https://doi.org/10.1159/000505099

Varela, N., Lanas, F., Salazar, L. A., & Zambrano, T. (2019). The Current State of MicroRNAs as Restenosis Biomarkers. Front Genet, 10, 1247. https://doi.org/10.3389/fgene.2019.01247

Verschuren, J. J., Trompet, S., Postmus, I., Sampietro, M. L., Heijmans, B. T., Houwing-Duistermaat, J. J., Slagboom, P. E., & Jukema, J. W. (2012). Systematic testing of literature reported genetic variation associated with coronary restenosis: results of the GENDER Study. PloS One, 7(8), e42401. https://doi.org/10.1371/journal.pone.0042401

Wahlgren, C. M., Sten-Linder, M., Egberg, N., Kalin, B., Blohme, L., & Swedenborg, J. (2006). The role of coagulation and inflammation after angioplasty in patients with peripheral arterial disease. Cardiovascular and Interventional Radiology, 29(4), 530-535. https://doi.org/10.1007/s00270-005-0159-0

Wang, X., Feuerstein, G. Z., Gu, J. L., Lysko, P. G., & Yue, T. L. (1995). Interleukin-1 beta induces expression of adhesion molecules in human vascular smooth muscle cells and enhances adhesion of leukocytes to smooth muscle cells. Atherosclerosis, 115(1), 89-98. https://doi.org/10.1016/0021-9150(94)05503-b

Wang, Z., Liu, C., & Fang, H. (2019). Blood Cell Parameters and Predicting Coronary In-Stent Restenosis. Angiology, 70(8), 711-718. https://doi.org/10.1177/0003319719830495

Wildgruber, M., Weiss, W., Berger, H., Wolf, O., Eckstein, H. H., & Heider, P. (2007). Association of circulating transforming growth factor beta, tumor necrosis factor alpha and basic fibroblast growth factor with restenosis after transluminal angioplasty. Eur J Vasc Endovasc Surg, 34(1), 35-43. https://doi.org/10.1016/j.ejvs.2007.02.009

Wu, X., Wu, M., Huang, H., Liu, Z., Huang, H., & Wang, L. (2025). Elevated Lipoprotein(a) Predicts Stent Edge Restenosis and Adverse Two-Year Outcomes After PCI: An Intravascular Ultrasound Study. International Journal of General Medicine, 18, 3713-3725. https://doi.org/10.2147/IJGM.S533584

Yi, G., Joo, H. C., & Yoo, K. J. (2013). Impact of preoperative C-reactive protein on midterm outcomes after off-pump coronary artery bypass grafting. Thoracic and Cardiovascular Surgeon, 61(8), 682-686. https://doi.org/10.1055/s-0033-1334124

Zeng, Q., Xu, Y., Zhang, W., Lv, F., & Zhou, W. (2021). IL-33 promotes the progression of vascular restenosis after carotid artery balloon injury by promoting carotid artery intimal hyperplasia and inflammatory response. Clinical and Experimental Pharmacology and Physiology, 48(1), 64-71. https://doi.org/10.1111/1440-1681.13380

Zhang, M. M., Zheng, Y. Y., Gao, Y., Zhang, J. Z., Liu, F., Yang, Y. N., Li, X. M., Ma, Y. T., & Xie, X. (2016). Heme oxygenase-1 gene promoter polymorphisms are associated with coronary heart disease and restenosis after percutaneous coronary intervention: a meta-analysis. Oncotarget, 7(50), 83437-83450. https://doi.org/10.18632/oncotarget.13118

Zhu, Y. Y., Hayward, P. A., Hare, D. L., Reid, C., Stewart, A. G., & Buxton, B. F. (2014). Effect of lipid exposure on graft patency and clinical outcomes: arteries and veins are different. Eur J Cardiothorac Surg, 45(2), 323-328. https://doi.org/10.1093/ejcts/ezt261

Zierfuss, B., Hobaus, C., Feldscher, A., Hannes, A., Mrak, D., Koppensteiner, R., Stangl, H., & Schernthaner, G. H. (2022). Lipoprotein (a) and long-term outcome in patients with peripheral artery disease undergoing revascularization. Atherosclerosis, 363, 94-101. https://doi.org/10.1016/j.atherosclerosis.2022.10.002

Views:

37

Downloads:

17

Published
2025-09-03
Citations
How to Cite
Mateusz Dembiński, Michał Bereza, Julia Prabucka-Marciniak, Edyta Szymańska, Jakub Pysiewicz, Kacper Kmieć, Joanna Kaszczewska, Patrycja Fiertek, Aleksandra Misarko, & Hubert Rycyk. (2025). BIOMARKERS IN VASCULAR SURGERY: PREDICTING GRAFT FAILURE AND RESTENOSIS. International Journal of Innovative Technologies in Social Science, 2(3(47). https://doi.org/10.31435/ijitss.3(47).2025.3642

Most read articles by the same author(s)