BIOMARKERS IN VASCULAR SURGERY: PREDICTING GRAFT FAILURE AND RESTENOSIS
Abstract
Vascular diseases are a major source of global morbidity and mortality, often requiring surgical intervention, but the long-term outcomes are frequently compromised by complications like graft failure and restenosis. Since traditional imaging methods often detect these issues only at an advanced stage, there is a critical need for more precise and earlier risk prediction tools. This comprehensive narrative review synthesizes existing literature on the predictive value of circulating and tissue-based biomarkers for these adverse outcomes.
The study systematically examined major electronic databases including PubMed, Scopus, and Web of Science, utilizing keywords related to vascular surgery, outcomes (e.g., graft failure, restenosis), and biomarkers. The identified biomarkers were categorized into four principal groups: inflammatory, lipid-related, genetic, and novel/emerging markers.
The review found that elevated levels of inflammatory markers—such as high-sensitivity C-reactive protein (hs-CRP) and various interleukins (IL-6, IL-1β, TNF-α, IL-18, IL-33)—are strongly associated with an increased risk of graft failure and restenosis. Conversely, anti-inflammatory interleukins like IL-10 and IL-19 were found to correlate with a reduced risk. Furthermore, an unfavorable lipid profile (high LDL, low HDL, or an elevated LDL/HDL ratio) was consistently linked to a higher incidence of these complications. The review also highlights the promising potential of genetic markers, such as specific single nucleotide polymorphisms (SNPs), and novel biomarkers like non-coding RNAs in developing personalized treatment strategies.
The findings suggest that incorporating biomarker panels into routine clinical practice could significantly enhance preoperative risk stratification, enabling tailored perioperative therapy and more effective postoperative surveillance. By allowing for the early detection of biological evidence of graft compromise, this precision-medicine model has the potential to substantially improve long-term patient outcomes in vascular surgery.
References
Aday, A. W., & Matsushita, K. (2021). Epidemiology of Peripheral Artery Disease and Polyvascular Disease. Circ Res, 128(12), 1818-1832. https://doi.org/10.1161/circresaha.121.318535
Araújo, P. V., Ribeiro, M. S., Dalio, M. B., Rocha, L. A., Viaro, F., Dellalibera Joviliano, R., Piccinato, C. E., Évora, P. R., & Joviliano, E. E. (2015). Interleukins and inflammatory markers in in-stent restenosis after femoral percutaneous transluminal angioplasty. Ann Vasc Surg, 29(4), 731-737. https://doi.org/10.1016/j.avsg.2014.12.006
Autieri, M. V. (2018). IL-19 and Other IL-20 Family Member Cytokines in Vascular Inflammatory Diseases. Frontiers in Immunology, 9, 700. https://doi.org/10.3389/fimmu.2018.00700
Böse, D., Leineweber, K., Konorza, T., Zahn, A., Bröcker-Preuss, M., Mann, K., Haude, M., Erbel, R., & Heusch, G. (2007). Release of TNF-alpha during stent implantation into saphenous vein aortocoronary bypass grafts and its relation to plaque extrusion and restenosis. Am J Physiol Heart Circ Physiol, 292(5), H2295-2299. https://doi.org/10.1152/ajpheart.01116.2006
Calik, A. N., Inan, D., Karatas, M. B., Akdeniz, E., Genc, D., Canga, Y., Cinar, T., & Emre, A. (2020). The association of preprocedural C-reactive protein/albumin ratio with in-stent restenosis in patients undergoing iliac artery stenting. J Cardiovasc Thorac Res, 12(3), 179-184. https://doi.org/10.34172/jcvtr.2020.31
Chamberlain, J., Gunn, J., Francis, S., Holt, C., & Crossman, D. (1999). Temporal and spatial distribution of interleukin-1 beta in balloon injured porcine coronary arteries. Cardiovascular Research, 44(1), 156-165. https://doi.org/10.1016/s0008-6363(99)00175-3
Demyanets, S., Tentzeris, I., Jarai, R., Katsaros, K. M., Farhan, S., Wonnerth, A., Weiss, T. W., Wojta, J., Speidl, W. S., & Huber, K. (2014). An increase of interleukin-33 serum levels after coronary stent implantation is associated with coronary in-stent restenosis. Cytokine, 67(2), 65-70. https://doi.org/10.1016/j.cyto.2014.02.014
Di, X., Han, W., Liu, C. W., Ni, L., & Zhang, R. (2021). A systematic review and meta-analysis on the association between C-reactive protein levels and adverse limb events after revascularization in patients with peripheral arterial disease. Journal of Vascular Surgery, 74(1), 317-326. https://doi.org/10.1016/j.jvs.2021.02.026
Ding, H. X., Ma, H. F., Xing, N., Hou, L., Zhou, C. X., Du, Y. P., & Wang, F. J. (2021). Five-year follow-up observation of interventional therapy for lower extremity vascular disease in type 2 diabetes and analysis of risk factors for restenosis. J Diabetes, 13(2), 134-142. https://doi.org/10.1111/1753-0407.13094
Efovi, D., & Xiao, Q. (2022). Noncoding RNAs in Vascular Cell Biology and Restenosis. Biology (Basel), 12(1). https://doi.org/10.3390/biology12010024
Elsaka, O. (2024). Novel Biomarkers in Vascular Diseases: From Discovery to Clinical Translation. Indian Journal of Vascular and Endovascular Surgery, 11(3), 142-151. https://doi.org/10.4103/ijves.ijves_42_24
England, R. N., & Autieri, M. V. (2012). Anti-inflammatory effects of interleukin-19 in vascular disease. Int J Inflam, 2012, 253583. https://doi.org/10.1155/2012/253583
Gareri, C., De Rosa, S., & Indolfi, C. (2016). MicroRNAs for Restenosis and Thrombosis After Vascular Injury. Circulation Research, 118(7), 1170-1184. https://doi.org/10.1161/CIRCRESAHA.115.308237
Ghali, J. K., Massie, B. M., Mann, D. L., & Rich, M. W. (2010). Heart failure guidelines, performance measures, and the practice of medicine: mind the gap. Journal of the American College of Cardiology, 56(25), 2077-2080. https://doi.org/10.1016/j.jacc.2010.07.013
Golledge, J., Rowbotham, S., Velu, R., Quigley, F., Jenkins, J., Bourke, M., Bourke, B., Thanigaimani, S., Chan, D. C., & Watts, G. F. (2020). Association of Serum Lipoprotein (a) With the Requirement for a Peripheral Artery Operation and the Incidence of Major Adverse Cardiovascular Events in People With Peripheral Artery Disease. J Am Heart Assoc, 9(6), e015355. https://doi.org/10.1161/JAHA.119.015355
Guo, S., Zhang, Z., Wang, L., Yuan, L., Bao, J., Zhou, J., & Jing, Z. (2020). Six-month results of stenting of the femoropopliteal artery and predictive value of interleukin-6: Comparison with high-sensitivity C-reactive protein. Vascular, 28(6), 715-721. https://doi.org/10.1177/1708538120921005
Hinagata, J., Kakutani, M., Fujii, T., Naruko, T., Inoue, N., Fujita, Y., Mehta, J. L., Ueda, M., & Sawamura, T. (2006). Oxidized LDL receptor LOX-1 is involved in neointimal hyperplasia after balloon arterial injury in a rat model. Cardiovasc Res, 69(1), 263-271. https://doi.org/10.1016/j.cardiores.2005.08.013
Hiramoto, J. S., Owens, C. D., Kim, J. M., Boscardin, J., Belkin, M., Creager, M. A., & Conte, M. S. (2012). Sex-based differences in the inflammatory profile of peripheral artery disease and the association with primary patency of lower extremity vein bypass grafts. Journal of Vascular Surgery, 56(2), 387-395; discussion 395. https://doi.org/10.1016/j.jvs.2012.01.059
Ho, K. J., Owens, C. D., Longo, T., Sui, X. X., Ifantides, C., & Conte, M. S. (2008). C-reactive protein and vein graft disease: evidence for a direct effect on smooth muscle cell phenotype via modulation of PDGF receptor-beta. American Journal of Physiology: Heart and Circulatory Physiology, 295(3), H1132-H1140. https://doi.org/10.1152/ajpheart.00079.2008
Indolfi, C., Iaconetti, C., Gareri, C., Polimeni, A., & De Rosa, S. (2019). Non-coding RNAs in vascular remodeling and restenosis. Vascular Pharmacology, 114, 49-63. https://doi.org/10.1016/j.vph.2018.10.006
Jawitz, O. K., Gulack, B. C., Brennan, J. M., Thibault, D. P., Wang, A., O'Brien, S. M., Schroder, J. N., Gaca, J. G., & Smith, P. K. (2020). Association of postoperative complications and outcomes following coronary artery bypass grafting. Am Heart J, 222, 220-228. https://doi.org/10.1016/j.ahj.2020.02.002
Jiang, H., Liu, W., Liu, Y., & Cao, F. (2015). High levels of HB-EGF and interleukin-18 are associated with a high risk of in-stent restenosis. Anatol J Cardiol, 15(11), 907-912. https://doi.org/10.5152/akd.2015.5798
Jones, D. W., Schanzer, A., Zhao, Y., MacKenzie, T. A., Nolan, B. W., Conte, M. S., & Goodney, P. P. (2013). Growing impact of restenosis on the surgical treatment of peripheral arterial disease. J Am Heart Assoc, 2(6), e000345. https://doi.org/10.1161/jaha.113.000345
Lane, T. R. A., Metcalfe, M. J., Narayanan, S., & Davies, A. H. (2011). Post-operative Surveillance after Open Peripheral Arterial Surgery. European Journal of Vascular and Endovascular Surgery, 42(1), 59-77. https://doi.org/https://doi.org/10.1016/j.ejvs.2011.03.023
Leal, T. P., Pinto, M., Hasselmann, G., Lammoglia, B. C., Trevise, L. A., & Salles Rosa Neto, N. (2023). Long-term patency of aorto-biiliac endoprosthesis for critical lower limb ischaemia in Takayasu arteritis after complicated angioplasty with a drug-coated balloon: Effect of dual antiplatelet therapy combined with tocilizumab. Mod Rheumatol Case Rep, 8(1), 101-106. https://doi.org/10.1093/mrcr/rxad030
Lian, W., Nie, H., Yuan, Y., Wang, K., Chen, W., & Ding, L. (2021). Clinical Significance of Endothelin-1 And C Reaction Protein in Restenosis After the Intervention of Lower Extremity Arteriosclerosis Obliterans. Journal of Investigative Surgery, 34(7), 765-770. https://doi.org/10.1080/08941939.2019.1690600
Liang, J. J., Xue, W., Lou, L. Z., Liu, C., Wang, Z. F., Li, Q. G., & Huang, S. H. (2014). Correlation of restenosis after rabbit carotid endarterectomy and inflammatory cytokines. Asian Pac J Trop Med, 7(3), 231-236. https://doi.org/10.1016/s1995-7645(14)60027-4
Liu, S., Yang, Y., Jiang, S., Tang, N., Tian, J., Ponnusamy, M., Tariq, M. A., Lian, Z., Xin, H., & Yu, T. (2018). Understanding the role of non-coding RNA (ncRNA) in stent restenosis. Atherosclerosis, 272, 153-161. https://doi.org/10.1016/j.atherosclerosis.2018.03.036
Maffia, P., Grassia, G., Di Meglio, P., Carnuccio, R., Berrino, L., Garside, P., Ianaro, A., & Ialenti, A. (2006). Neutralization of interleukin-18 inhibits neointimal formation in a rat model of vascular injury. Circulation, 114(5), 430-437. https://doi.org/10.1161/CIRCULATIONAHA.105.602714
Marques, J. C., Marques, M. F., Ribeiro, H., Neves, A. P., Zlatanovic, P., & Neves, J. R. (2025). The Impact of Elevated Lipoprotein (a) Levels on Postoperative Outcomes in Carotid Endarterectomy: A Systematic Review. J Clin Med, 14(7). https://doi.org/10.3390/jcm14072253
Meng, H., Zhou, X., Li, L., Liu, Y., Liu, Y., & Zhang, Y. (2024). Monocyte to high-density lipoprotein cholesterol ratio predicts restenosis of drug-eluting stents in patients with unstable angina pectoris. Sci Rep, 14(1), 30175. https://doi.org/10.1038/s41598-024-81818-9
Nan, J., Meng, S., Hu, H., Jia, R., Chen, C., Peng, J., & Jin, Z. (2020). The Predictive Value of Monocyte Count to High-Density Lipoprotein Cholesterol Ratio in Restenosis After Drug-Eluting Stent Implantation. Int J Gen Med, 13, 1255-1263. https://doi.org/10.2147/ijgm.S275202
Naruko, T., Ueda, M., Ehara, S., Itoh, A., Haze, K., Shirai, N., Ikura, Y., Ohsawa, M., Itabe, H., Kobayashi, Y., Yamagishi, H., Yoshiyama, M., Yoshikawa, J., & Becker, A. E. (2006). Persistent high levels of plasma oxidized low-density lipoprotein after acute myocardial infarction predict stent restenosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 26(4), 877-883. https://doi.org/10.1161/01.ATV.0000209886.31510.7f
Oemar, B. S. (1999). Is interleukin-1 beta a triggering factor for restenosis? Cardiovascular Research, 44(1), 17-19. https://doi.org/10.1016/s0008-6363(99)00215-1
Owens, C. D., Ridker, P. M., Belkin, M., Hamdan, A. D., Pomposelli, F., Logerfo, F., Creager, M. A., & Conte, M. S. (2007). Elevated C-reactive protein levels are associated with postoperative events in patients undergoing lower extremity vein bypass surgery. Journal of Vascular Surgery, 45(1), 2-9; discussion 9. https://doi.org/10.1016/j.jvs.2006.08.048
Parolari, A., Poggio, P., Myasoedova, V., Songia, P., Bonalumi, G., Pilozzi, A., Pacini, D., Alamanni, F., & Tremoli, E. (2015). Biomarkers in Coronary Artery Bypass Surgery: Ready for Prime Time and Outcome Prediction? Front Cardiovasc Med, 2, 39. https://doi.org/10.3389/fcvm.2015.00039
Qin, S. Y., Liu, J., Jiang, H. X., Hu, B. L., Zhou, Y., & Olkkonen, V. M. (2013). Association between baseline lipoprotein (a) levels and restenosis after coronary stenting: meta-analysis of 9 cohort studies. Atherosclerosis, 227(2), 360-366. https://doi.org/10.1016/j.atherosclerosis.2013.01.014
Ridker, P. M., Cushman, M., Stampfer, M. J., Tracy, R. P., & Hennekens, C. H. (1997). Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. New England Journal of Medicine, 336(14), 973-979. https://doi.org/10.1056/NEJM199704033361401
Ridker, P. M., Everett, B. M., Thuren, T., MacFadyen, J. G., Chang, W. H., Ballantyne, C., Fonseca, F., Nicolau, J., Koenig, W., Anker, S. D., Kastelein, J. J. P., Cornel, J. H., Pais, P., Pella, D., Genest, J., Cifkova, R., Lorenzatti, A., Forster, T., Kobalava, Z., . . . Group, C. T. (2017). Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. New England Journal of Medicine, 377(12), 1119-1131. https://doi.org/10.1056/NEJMoa1707914
Ryu, J. C., Bae, J. H., Ha, S. H., Kwon, B., Song, Y., Lee, D. H., Kim, B. J., Kang, D. W., Kwon, S. U., Kim, J. S., & Chang, J. Y. (2023). Association between lipid profile changes and risk of in-stent restenosis in ischemic stroke patients with intracranial stenosis: A retrospective cohort study. PLoS One, 18(5), e0284749. https://doi.org/10.1371/journal.pone.0284749
Schillinger, M., & Minar, E. (2005). Restenosis after percutaneous angioplasty: the role of vascular inflammation. Vasc Health Risk Manag, 1(1), 73-78. https://doi.org/10.2147/vhrm.1.1.73.58932
Segev, A., Strauss, B. H., Witztum, J. L., Lau, H. K., & Tsimikas, S. (2005). Relationship of a comprehensive panel of plasma oxidized low-density lipoprotein markers to angiographic restenosis in patients undergoing percutaneous coronary intervention for stable angina. American Heart Journal, 150(5), 1007-1014. https://doi.org/10.1016/j.ahj.2004.12.008
Shimokawa, H., Ito, A., Fukumoto, Y., Kadokami, T., Nakaike, R., Sakata, M., Takayanagi, T., Egashira, K., & Takeshita, A. (1996). Chronic treatment with interleukin-1 beta induces coronary intimal lesions and vasospastic responses in pigs in vivo. The role of platelet-derived growth factor. Journal of Clinical Investigation, 97(3), 769-776. https://doi.org/10.1172/JCI118476
Takasaki, A., Kurita, T., Hirota, Y., Uno, K., Kirii, Y., Ichikawa, M., Ishiyama, M., Terashima, M., Nakajima, A., & Dohi, K. (2023). Isolated Coronary Arteritis Treated With FDG-PET/CT-Guided Immunosuppressant to Break the Vicious Cycle of In-Stent Restenosis. JACC Case Rep, 28, 102102. https://doi.org/10.1016/j.jaccas.2023.102102
Tok, D., Turak, O., Yayla, Ç., Ozcan, F., Tok, D., & Çağlı, K. (2016). Monocyte to HDL ratio in prediction of BMS restenosis in subjects with stable and unstable angina pectoris. Biomark Med, 10(8), 853-860. https://doi.org/10.2217/bmm-2016-0071
Ucar, F. M. (2016). A potential marker of bare metal stent restenosis: monocyte count - to- HDL cholesterol ratio. BMC Cardiovasc Disord, 16(1), 186. https://doi.org/10.1186/s12872-016-0367-3
Uciechowski, P., & Dempke, W. C. M. (2020). Interleukin-6: A Masterplayer in the Cytokine Network. Oncology, 98(3), 131-137. https://doi.org/10.1159/000505099
Varela, N., Lanas, F., Salazar, L. A., & Zambrano, T. (2019). The Current State of MicroRNAs as Restenosis Biomarkers. Front Genet, 10, 1247. https://doi.org/10.3389/fgene.2019.01247
Verschuren, J. J., Trompet, S., Postmus, I., Sampietro, M. L., Heijmans, B. T., Houwing-Duistermaat, J. J., Slagboom, P. E., & Jukema, J. W. (2012). Systematic testing of literature reported genetic variation associated with coronary restenosis: results of the GENDER Study. PloS One, 7(8), e42401. https://doi.org/10.1371/journal.pone.0042401
Wahlgren, C. M., Sten-Linder, M., Egberg, N., Kalin, B., Blohme, L., & Swedenborg, J. (2006). The role of coagulation and inflammation after angioplasty in patients with peripheral arterial disease. Cardiovascular and Interventional Radiology, 29(4), 530-535. https://doi.org/10.1007/s00270-005-0159-0
Wang, X., Feuerstein, G. Z., Gu, J. L., Lysko, P. G., & Yue, T. L. (1995). Interleukin-1 beta induces expression of adhesion molecules in human vascular smooth muscle cells and enhances adhesion of leukocytes to smooth muscle cells. Atherosclerosis, 115(1), 89-98. https://doi.org/10.1016/0021-9150(94)05503-b
Wang, Z., Liu, C., & Fang, H. (2019). Blood Cell Parameters and Predicting Coronary In-Stent Restenosis. Angiology, 70(8), 711-718. https://doi.org/10.1177/0003319719830495
Wildgruber, M., Weiss, W., Berger, H., Wolf, O., Eckstein, H. H., & Heider, P. (2007). Association of circulating transforming growth factor beta, tumor necrosis factor alpha and basic fibroblast growth factor with restenosis after transluminal angioplasty. Eur J Vasc Endovasc Surg, 34(1), 35-43. https://doi.org/10.1016/j.ejvs.2007.02.009
Wu, X., Wu, M., Huang, H., Liu, Z., Huang, H., & Wang, L. (2025). Elevated Lipoprotein(a) Predicts Stent Edge Restenosis and Adverse Two-Year Outcomes After PCI: An Intravascular Ultrasound Study. International Journal of General Medicine, 18, 3713-3725. https://doi.org/10.2147/IJGM.S533584
Yi, G., Joo, H. C., & Yoo, K. J. (2013). Impact of preoperative C-reactive protein on midterm outcomes after off-pump coronary artery bypass grafting. Thoracic and Cardiovascular Surgeon, 61(8), 682-686. https://doi.org/10.1055/s-0033-1334124
Zeng, Q., Xu, Y., Zhang, W., Lv, F., & Zhou, W. (2021). IL-33 promotes the progression of vascular restenosis after carotid artery balloon injury by promoting carotid artery intimal hyperplasia and inflammatory response. Clinical and Experimental Pharmacology and Physiology, 48(1), 64-71. https://doi.org/10.1111/1440-1681.13380
Zhang, M. M., Zheng, Y. Y., Gao, Y., Zhang, J. Z., Liu, F., Yang, Y. N., Li, X. M., Ma, Y. T., & Xie, X. (2016). Heme oxygenase-1 gene promoter polymorphisms are associated with coronary heart disease and restenosis after percutaneous coronary intervention: a meta-analysis. Oncotarget, 7(50), 83437-83450. https://doi.org/10.18632/oncotarget.13118
Zhu, Y. Y., Hayward, P. A., Hare, D. L., Reid, C., Stewart, A. G., & Buxton, B. F. (2014). Effect of lipid exposure on graft patency and clinical outcomes: arteries and veins are different. Eur J Cardiothorac Surg, 45(2), 323-328. https://doi.org/10.1093/ejcts/ezt261
Zierfuss, B., Hobaus, C., Feldscher, A., Hannes, A., Mrak, D., Koppensteiner, R., Stangl, H., & Schernthaner, G. H. (2022). Lipoprotein (a) and long-term outcome in patients with peripheral artery disease undergoing revascularization. Atherosclerosis, 363, 94-101. https://doi.org/10.1016/j.atherosclerosis.2022.10.002
Views:
37
Downloads:
17
Copyright (c) 2025 Mateusz Dembiński, Michał Bereza, Julia Prabucka-Marciniak, Edyta Szymańska, Jakub Pysiewicz, Kacper Kmieć, Joanna Kaszczewska, Patrycja Fiertek, Aleksandra Misarko, Hubert Rycyk

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.