A REVIEW OF mRNA VACCINES IN PROSTATE AND LUNG CANCER THERAPY: MECHANISMS, CLINICAL APPLICATIONS AND DEVELOPMENT DIRECTIONS
Abstract
mRNA vaccines constitute a new class of anticancer therapy, enabling precise stimulation of the immune system through the expression of tumour antigens. The success of COVID-19 vaccines has accelerated their development and has opened up new therapeutic possibilities in oncology. The aim of the review is to discuss the current state of knowledge on the mechanisms of action, clinical applications, and directions for the development of mRNA vaccines in cancer therapy. The study reviews scientific literature on the therapeutic use of mRNA vaccines in the treatment of prostate and lung cancer. The data include scientific publications from 2003 to 2025, published in the PubMed and Scopus databases. mRNA vaccines have shown promising efficacy in the treatment of advanced prostate cancer (CV9103, CV9104), non-small cell lung cancer (CV9201, CV9202, mRNA-5671/V941). The use of lipid nanocarriers (LNPs) significantly improves vaccine stability and immunogenicity. Combination therapies with immune checkpoint inhibitors (ICIs) demonstrate synergistic effects. mRNA vaccines present a promising strategy in cancer immunotherapy but require further research into formulation stability, the accuracy of antigen selection, and the predictability of immune responses. Furthermore, advancements in LNP technology and personalised medicine supported by artificial intelligence could markedly improve the clinical efficacy of mRNA therapies.
References
Alameh, M. G., Tombácz, I., Bettini, E., Lederer, K., Sittplangkoon, C., Wilmore, J. R., Gaudette, B. T., Soliman, K., Pine, M., Hicks, P., Manzoni, T. B., Shirreff, L., Shah, A., Mui, B. L., Tam, Y. K., Karikó, K., Krammer, F., Bates, P., Cancro, M. P., Weissman, D., & Pardi, N. (2021). Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity, 54(12), 2877–2892.e2877. https://doi.org/10.1016/j.immuni.2021.11.001
Alameh, M. G., Weissman, D., & Pardi, N. (2022). Messenger RNA-based vaccines against infectious diseases. mRNA Vaccines, 440, 111–145. https://doi.org/10.1007/82_2020_202
Alberts, P., Sessa, C., Fiedler, U., Michaux, J., Roets, M., van Dijl, J., Bex, A., Squiban, P., Meloni, G., Dirix, L., Awada, A., & Hoos, A. (2020). A phase I study of CV9103, a novel mRNA vaccine for prostate cancer, demonstrates safety and T cell immunogenicity. Cancer Immunology, Immunotherapy, 69(4), 547–556. https://doi.org/10.1007/s00262-019-02446-3
Alburquerque-González, B., López-Abellán, M. D., Luengo-Gil, G., Montoro-García, S., & Conesa-Zamora, P. (2022). Design of personalized neoantigen RNA vaccines against cancer based on next-generation sequencing data. Methods in Molecular Biology, 2547, 165–185. https://doi.org/10.1007/978-1-0716-2573-6_7
Anindita, J., Tanaka, H., Yamakawa, T., Sato, Y., Matsumoto, C., Ishizaki, K., Oyama, T., Suzuki, S., Ueda, K., Higashi, K., Moribe, K., Sasaki, K., Ogura, Y., Yonemochi, E., Sakurai, Y., Hatakeyama, H., & Akita, H. (2024). The effect of cholesterol content on the adjuvant activity of nucleic-acid‑free lipid nanoparticles. Pharmaceutics, 16(2), Article 181. https://doi.org/10.3390/pharmaceutics16020181
Asplund, A., Edqvist, P. H. D., Schwenk, J. M., & Pontén, F. (2012). Antibodies for profiling the human proteome—The Human Protein Atlas as a resource for cancer research. Proteomics, 12(13), 2067–2077. https://doi.org/10.1002/pmic.201100504
Baden, L. R., El Sahly, H. M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S. A., Rouphael, N., Creech, C. B., McGettigan, J., Khetan, S., Segall, N., Solis, J., Brosz, A., Fierro, C., Schwartz, H., Neuzil, K., Corey, L., … Zaks, T. (2021). Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. The New England Journal of Medicine, 384(5), 403–416. https://doi.org/10.1056/nejmoa2035389
Baiersdörfer, M., Boros, G., Muramatsu, H., et al. (2019). A facile method for the removal of dsRNA contaminant from in vitro-transcribed mRNA. Molecular Therapy - Nucleic Acids, 15, 26–35. https://doi.org/10.1016/j.omtn.2019.02.018
Barrangou, R. (2024). Five years of progress in CRISPR clinical trials (2019–2024). CRISPR Journal, 7, 227–230. https://doi.org/10.1089/crispr.2024.0081
Bernal, A., Bechler, A. J., Mohan, K., Rizzino, A., & Mathew, G. (2024). The current therapeutic landscape for metastatic prostate cancer. Pharmaceuticals, 17(351). https://doi.org/10.3390/ph17030351
Bhopal, A., Peake, M. D., Gilligan, D., & Cosford, P. (2019). Lung cancer in never-smokers: A hidden disease. Journal of the Royal Society of Medicine, 112, 269–271. https://doi.org/10.1177/0141076819843654
Biswas, N., Chakrabarti, S., Padul, V., Jones, L. D., & Ashili, S. (2023). Designing neoantigen cancer vaccines, trials, and outcomes. Frontiers in Immunology, 14, 1105420. https://doi.org/10.3389/fimmu.2023.1105420
Blanchard, E. L., Loomis, K. H., Bhosle, S. M., Vanover, D., Baumhof, P., Pitard, B., et al. (2019). Proximity ligation assays for in situ detection of innate immune activation: Focus on in vitro-transcribed mRNA. Molecular Therapy - Nucleic Acids, 14, 52–66. https://doi.org/10.1016/j.omtn.2018.11.002
Blass, E., & Ott, P. A. (2021). Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nature Reviews Clinical Oncology, 18, 215–229. https://doi.org/10.1038/s41571-020-00460-2
Bloom, K., van den Berg, F., & Arbuthnot, P. (2021). Self-amplifying RNA vaccines for infectious diseases. Gene Therapy, 28, 117–129. https://doi.org/10.1038/s41434-020-00204-y
Bollu, A., Peters, A., & Rentmeister, A. (2022). Chemo-enzymatic modification of the 5′ cap to study mRNAs. Accounts of Chemical Research, 55(9), 1249–1261. https://doi.org/10.1021/acs.accounts.2c00059
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., & Jemal, A. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 74, 229–263. https://doi.org/10.3322/caac.21834
Buonaguro, L., & Tagliamonte, M. (2023). Peptide-based vaccine for cancer therapies. Frontiers in Immunology, 14, 1210044. https://doi.org/10.3389/fimmu.2023.1210044
Chaudhary, N., Kasiewicz, L. N., Newby, A. N., Arral, M. L., Yerneni, S. S., Melamed, J. R., Castro-Dopico, T., Sevimli, S., Fenton, O. S., Haupt, J., Lin, P. J. C., Cohen, J. L., Grosz, J., Sinnen, B. L., Smith, T. T., Drage, M. G., Swanson, P. A., Franco, I., Engelhart, C. A., & Jewell, C. M. (2024). Amine headgroups in ionizable lipids drive immune responses to lipid nanoparticles by binding to the receptors TLR4 and CD1d. Nature Biomedical Engineering, 8, 1483–1498. https://doi.org/10.1038/s41551-024-01256-w
Corbett, K. S., Edwards, D. K., Leist, S. R., Abiona, O. M., Boyoglu-Barnum, S., Gillespie, R. A., Himansu, S., Schäfer, A., Ziwawo, C. T., DiPiazza, A. T., Dinnon, K. H., Elbashir, S. M., Shaw, C. A., Woods, A., Fritch, E. J., Martinez, D. R., Bock, K. W., Minai, M., Nagata, B. M., ... Graham, B. S. (2020). SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature, 586(7830), 567–571. https://doi.org/10.1038/s41586-020-2622-0
Cornford, P., et al. (2024). EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer-2024 update. Part I: Screening, diagnosis, and local treatment with curative intent. European Urology, 86, 148–163.
Drazkowska, K., Tomecki, R., Warminski, M., Kudla, G., Rudzka, J., Flis, K., Sikorski, P. J., Sadowski, J., Nowis, D., Golab, J., Kowalska, J., & Jemielity, J. (2022). 2′-O-methylation of the second transcribed nucleotide within the mRNA 5′ cap impacts protein production in a cell-specific manner and contributes to RNA immune evasion. Nucleic Acids Research, 50(16), 9051–9071. https://doi.org/10.1093/nar/gkac722
Fan, T., Huang, G., Liu, Y., Tan, J., Liu, Y., Li, Y., Lin, X., & Pan, Z. (2023). Therapeutic cancer vaccines: Advancements, challenges, and prospects. Signal Transduction and Targeted Therapy, 8, 450. https://doi.org/10.1038/s41392-023-01674-3
Fang, E., Liu, X., Li, M., Zhang, Z., Song, L., Zhu, B., Wu, X., Li, G., Liu, Y., Li, J., Zhao, D., Zhang, X., Zhang, Y., & Wu, J. (2022). Advances in COVID-19 mRNA vaccine development. Signal Transduction and Targeted Therapy, 7(1), 94. https://doi.org/10.1038/s41392-022-00950-y
Fang, E., Liu, X., Li, M., Zhang, Z., Song, L., Zhu, B., Wu, X., Li, G., Liu, Y., Li, J., Zhao, D., Zhang, X., Zhang, Y., & Wu, J. (2022). Advances in COVID-19 mRNA vaccine development. Signal Transduction and Targeted Therapy, 7(1), 94. https://doi.org/10.1038/s41392-022-00950-y
Foster, J. B., Choudhari, N., Perazzelli, J., Storm, J., Hofmann, T. J., Jain, P., Lopez, M., Secreto, A., Shah, N., Barrett, D. M., & Melenhorst, J. J. (2019). Purification of mRNA encoding chimeric antigen receptor is critical for generation of a robust T-cell response. Human Gene Therapy, 30(2), 168–178. https://doi.org/10.1089/hum.2018.145
Heidenreich, A., Rawal, S., Szkarlat, K., Bogdanova, N., Dirix, L., Birtle, A., Hoos, A., de la Motte Rouge, T., Feyerabend, S., & Gandi, C. (2017). Randomized phase II trial of the mRNA vaccine CV9104 in patients with advanced castration-resistant prostate cancer. Journal of Clinical Oncology, 35(suppl), Abstract 5063. https://doi.org/10.1200/JCO.2017.35.15_suppl.5063
Henderson, H. (2024). CRISPR clinical trials: A 2024 update. IGI News, 13 March.
Hou, X., Zaks, T., Langer, R., & Dong, Y. (2021). Lipid nanoparticles for mRNA delivery. Nature Reviews Materials, 6(12), 1078–1094. https://doi.org/10.1038/s41578-021-00358-0
Jamal-Hanjani, M., Quezada, S. A., Larkin, J., & Swanton, C. (2015). Translational implications of tumor heterogeneity. Clinical Cancer Research, 21, 1258–1266. https://doi.org/10.1158/1078-0432.ccr-14-1429
Jarvis, T. C., Bouhana, K. S., Lesch, M. E., Brown, S. A., Parry, T. J., Schrier, D. J., Hunt, S. W., Pavco, P. A., & Flory, C. M. (2000). Ribozymes as tools for therapeutic target validation in arthritis. The Journal of Immunology, 165(1), 493–500. https://doi.org/10.4049/jimmunol.165.1.493
Karikó, K., Buckstein, M., Ni, H., & Weissman, D. (2005). Suppression of RNA recognition by Toll-like receptors: The impact of nucleoside modification and the evolutionary origin of RNA. Immunity, 23(2), 165–175. https://doi.org/10.1016/j.immuni.2005.06.008
Kesch, C., Heidegger, I., Kasivisvanathan, V., Kretschmer, A., Marra, G., Preisser, F., Mazzone, E., Tian, Z., Shariat, S. F., Saad, F., Tilki, D., & Chun, F. K. (2021). Radical prostatectomy: Sequelae in the course of time. Frontiers in Surgery, 8, 684088. https://doi.org/10.3389/fsurg.2021.684088
Kim, J., Eygeris, Y., Gupta, M., & Sahay, G. (2021). Self-assembled mRNA vaccines. Advanced Drug Delivery Reviews, 170, 83–112. https://doi.org/10.1016/j.addr.2020.12.014
Kim, S. C., Sekhon, S. S., Shin, W. R., Ahn, G., Cho, B., & Kim, Y. S. (2021). Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency. Molecular & Cellular Toxicology, 17(1), 1–8. https://doi.org/10.1007/s13273-021-00171-4
Kiousi, E., Lyraraki, V., Mardiki, G. L., Stachika, N., Damianou, A. K., Malainou, C. P., Karakasiliotis, I., Vlachakis, D., & Paraskevis, D. (2023). Progress and challenges of messenger RNA vaccines in the therapeutics of NSCLC. Cancers, 15, 5589. https://doi.org/10.3390/cancers15235589
Klingemann, A. (2022). The era of AI-designed cancer vaccines. Nature Biotechnology, 40, 1700–1701. https://doi.org/10.1038/s41587-022-01587-9
Kranz, L. M., Diken, M., Haas, H., Kreiter, S., Loquai, C., Reuter, K. C., Meng, M., Fritz, D., Vascotto, F., Hefesha, H., Grunwitz, C., Vormehr, M., Hüsemann, Y., Selmi, A., Kuhn, A. N., Buck, J., Derhovanessian, E., Rae, R., Attig, S., Diekmann, J., ... Sahin, U. (2016). Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature, 534(7607), 396–401. https://doi.org/10.1038/nature18300
Kübler, H., Scheel, B., Gnad-Vogt, U., Miller, K., Schultze-Seemann, W., Vom Dorp, F., Hampel, C., Wedel, S., Lukacs-Kornek, V., Reinhardt, C., Fritsche, J., Hoerr, I., Fotin-Mleczek, M., Schlake, T., & Türeci, Ö. (2015). Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: A first-in-man phase I/IIa study. Journal for ImmunoTherapy of Cancer, 3(1), 10. https://doi.org/10.1186/s40425-015-0068-y
Lahiri, A., Maji, A., Potdar, P. D., Singh, N., Parikh, P., Bisht, B., Bhatnagar, S., Verma, R., Bhardwaj, A., Das, P., Chawla, R., Kumar, D., Bakhshi, S., Malhotra, P., Dwarakanath, B. S., Bhatt, M. L. B., & Vishnubhatla, S. (2023). Lung cancer immunotherapy: Progress, pitfalls, and promises. Molecular Cancer, 22, 40. https://doi.org/10.1186/s12943-023-01740-y
Li, W., et al. (2024). mRNA cancer vaccines: Advances, trends and future directions. Journal of Hematology & Oncology, 17(38). https://doi.org/10.1186/s13045-025-01694-2
Li, Y., Zhang, X., Luo, L., Wu, W., Zhang, Y., Chen, X., Li, H., Zhou, D., & Fan, J. (2023). mRNA vaccine in cancer therapy: Current advance and future outlook. Clinical and Translational Medicine. https://doi.org/10.1002/ctm2.1384
Linch, M., Papai, Z., Takacs, I., Devi, L. A., Gray, N., Bolis, G., Carbone, D. P., Rodon, J., Genta, S., Tureci, Ö., Sahin, U., & Gnad-Vogt, U. (2021). A first-in-human phase I/IIa clinical trial assessing a ribonucleic acid lipoplex (RNA-LPX) encoding shared tumor antigens for immunotherapy of prostate cancer: Preliminary analysis of PRO-MERIT. Journal for ImmunoTherapy of Cancer, 9(Suppl 2), A448–A449.
Liu, D., Li, Y., Wang, J., Chen, X., Zhang, H., Zhao, L., Sun, Y., Liu, Q., & Wang, X. (2024). Advancements and challenges in peptide-based cancer vaccination: A multidisciplinary perspective. Vaccines, 12, 950. https://doi.org/10.3390/vaccines12080950
Lorentzen, C. L., Haanen, J. B., Met, Ø., & Svane, I. M. (2022). Clinical advances and ongoing trials of mRNA vaccines for cancer treatment. The Lancet Oncology, 23, e450–e458. https://doi.org/10.1016/s1470-2045(22)00372-2
Lowrance, W., Cookson, M. S., Lotan, Y., Davis, J. W., Hayn, M. H., Higano, C. S., Holzbeierlein, J. M., Shore, N. D., & Morgan, T. M. (2023). Updates to advanced prostate cancer: AUA/SUO guideline. Journal of Urology, 209, 1082–1090. https://doi.org/10.1097/JU.0000000000003452
Lu, Y. C., Yao, X., Crystal, J. S., Li, Y. F., El-Gamil, M., Gross, C., Dudley, M. E., Yang, J. C., Samuels, Y., Rosenberg, S. A., & Robbins, P. F. (2014). Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumour regressions. Clinical Cancer Research, 20(13), 3401–3410. https://doi.org/10.1158/1078-0432.CCR-14-0433
Marino, F. Z., Bianco, R., Accardo, M., Ronchi, A., Cozzolino, I., Morgillo, F., Montanino, A., Belli, G., & Rossi, G. (2019). Molecular heterogeneity in lung cancer: From mechanisms of origin to clinical implications. International Journal of Medical Sciences, 16, 981–989. https://doi.org/10.7150/ijms.34739
McKay, P. F., Hu, K., Blakney, A. K., Samnuan, K., Brown, J. C., Penn, R., Zhou, J., Bouton, C. R., Rogers, P., Polra, K., King, D. F. L., Shattock, R. J. (2020). Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. Nature Communications, 11, 3523. https://doi.org/10.1038/s41467-020-17409-9
McNeel, D. G., Eickhoff, J. C., Wargowski, E., Zahm, C. D., Staab, M. J., Wong, H. C., Guo, C., Disis, M. L., Liu, G., & Hankey, K. G. (2018). Concurrent, but not sequential, PD-1 blockade with a DNA vaccine elicits anti-tumor responses in patients with metastatic, castration-resistant prostate cancer. Oncotarget, 9, 25586–25596. https://doi.org/10.18632/oncotarget.25387
McNeel, D. G., Eickhoff, J. C., Zahm, C. D., Staab, M. J., Wong, H. C., Disis, M. L., Liu, G., Hankey, K. G., & Mahvi, D. A. (2022). Phase 2 trial of T-cell activation using MVI-816 and pembrolizumab in patients with metastatic, castration-resistant prostate cancer. Journal for ImmunoTherapy of Cancer, 10, e004198. https://doi.org/10.1136/jitc-2021-004198
Miao, L., Zhang, Y., & Huang, L. (2021). mRNA vaccine for cancer immunotherapy. Molecular Cancer, 20, 41. https://doi.org/10.1186/s12943-021-01335-5
Morse, M. A., Nair, S. K., Mosca, P. J., Hobeika, A. C., Clay, T. M., Deng, Y., Bishop, D. K., Booker, J., & Lyerly, H. K. (2003). Immunotherapy with autologous, human dendritic cells transfected with carcinoembryonic antigen mRNA. Cancer Investigation, 21, 341–349. https://doi.org/10.1081/CNV-120018224
Mulroney, T. E., Pöyry, T., Yam-Puc, J. C., Peralta, A., Ganesan, S. S., Kumar, P., Barna, M., Atkins, J. F., & Finkelstein, D. B. (2024). N1-methylpseudouridylation of mRNA causes +1 ribosomal frameshifting. Nature, 625(7993), 189–194. https://doi.org/10.1038/s41586-023-06800-3
Mundhara, N., & Sadhukhan, P. (2024). Cracking the codes behind cancer cells’ immune evasion. International Journal of Molecular Sciences, 25, 8899. https://doi.org/10.3390/ijms25168899
Papachristofilou, A., Hipp, M. M., Klinkhardt, U., Früh, M., Sebastian, M., Weiss, C., Cathomas, R., Hilbe, W., Pall, G., Ochsenbein, A. F., Rothschild, S. I., Joerger, M., Droege, C., Kasenda, B., Siano, M., Schmid, R. A., Ochsenbein, S., Hoerr, I., Fotin-Mleczek, M., & Murer, C. (2019). Phase Ib evaluation of a self-adjuvanted protamine-formulated mRNA-based active cancer immunotherapy, BI1361849 (CV9202), combined with local radiation treatment in patients with stage IV non-small cell lung cancer. Journal for ImmunoTherapy of Cancer, 7, 38. https://doi.org/10.1186/s40425-019-0520-5
Pardi, N., Hogan, M. J., Porter, F. W., & Weissman, D. (2018). mRNA vaccines—a new era in vaccinology. Nature Reviews Drug Discovery, 17(4), 261–279. https://doi.org/10.1038/nrd.2017.243
Pardi, N., Zoltick, P. W., & Weissman, D. (2024). mRNA vaccines for cancer immunotherapy. Pharmacology & Therapeutics, 249, 108461. https://doi.org/10.1016/j.pharmthera.2024.108461
Perez, C. R., & De Palma, M. (2019). Engineering dendritic cell vaccines to improve cancer immunotherapy. Nature Communications, 10, 5408. https://doi.org/10.1038/s41467-019-13368-y
Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J. L., Pérez Marc, G., Moreira, E. D., Zerbini, C., Bailey, R., Swanson, K. A., Roychoudhury, S., Koury, K., Li, P., Kalina, W. V., Cooper, D., Frenck, R. W., Hammitt, L. L., Türeci, Ö., … Gruber, W. C. (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. The New England Journal of Medicine, 383(27), 2603–2615. https://doi.org/10.1056/NEJMoa2034577
Qin, S., Tang, X., Chen, Y., Chen, K., Fan, N., Xiao, W., Xie, C., Han, L., Qi, X., & Zhang, C. (2022). mRNA-based therapeutics: Powerful and versatile tools to combat diseases. Signal Transduction and Targeted Therapy, 7, 166. https://doi.org/10.1038/s41392-022-00969-1
Ramadan, E., Ahmed, A., & Naguib, Y. W. (2024). Advances in mRNA LNP-based cancer vaccines: Mechanisms, formulation aspects, challenges, and future directions. Journal of Personalized Medicine, 14, 1092. https://doi.org/10.3390/jpm14111092
Ramos, R., Nuno, V., & Vale, V. (2024). Emerging immunotherapies in lung cancer: The latest. Vaccines, 13(5), 476. https://doi.org/10.3390/vaccines13050476
Rausch, S., Schwentner, C., Stenzl, A., & Bedke, J. (2014). mRNA vaccine CV9103 and CV9104 for the treatment of prostate cancer. Human Vaccines & Immunotherapeutics, 10, 3146–3152. https://doi.org/10.4161/hv.29553
Raychaudhuri, R., Lin, D. W., & Montgomery, R. B. (2025). Prostate cancer: A review. JAMA, 333, 1433–1446. https://doi.org/10.1001/jama.2025.0228
Ribas, A., & Wolchok, J. D. (2018). Cancer immunotherapy using checkpoint blockade. Science, 359(6382), 1350–1355. https://doi.org/10.1126/science.aar4060
Rossino, G., Palomba, T., Ventura, C. A., De Luca, L., Parisi, O. I., & Puoci, F. (2023). Peptides as therapeutic agents: Challenges and opportunities in the green transition era. Molecules, 28(20), 7165. https://doi.org/10.3390/molecules28207165
Sahin, U., & Türeci, Ö. (2018). Personalized vaccines for cancer immunotherapy. Science, 359(6382), 1355–1360. https://doi.org/10.1126/science.aar7112
Sahin, U., Derhovanessian, E., Miller, M., Kloke, B. P., Simon, P., Löwer, M., Bukur, V., Tadmor, A. D., Luxemburger, U., Schrörs, B., Omokoko, T., Vormehr, M., Albrecht, C., Paruzynski, A., Kuhn, A. N., Buck, J., Heesch, S., Schreeb, K. H., Müller, F., … Türeci, Ö. (2017). Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 547(7662), 222–226. https://doi.org/10.1038/nature23003
Sanaei, M.-J., Pourbagheri-Sigaroodi, A., Rezvani, A., Zaboli, E., Salari, S., Masjedi, M. R., & Bashash, D. (2024). Lung cancer vaccination from concept to reality: A critical review of clinical trials and latest advances. Life Sciences, 346, 122652. https://doi.org/10.1016/j.lfs.2024.122652
Saxena, M., van der Burg, S. H., Melief, C. J., & Bhardwaj, N. (2021). Therapeutic cancer vaccines. Nature Reviews Cancer, 21(6), 360–378. https://doi.org/10.1038/s41568-021-00346-0
Sebastian, M., Schröder, A., Scheel, B., Hong, H. S., Muth, A., Von Boehmer, L., Loew-Baselli, A., Graeven, U., Kühn, W., Huber, C., Türeci, Ö., & Sahin, U. (2019). A phase I/IIa study of the mRNA-based cancer immunotherapy CV9201 in patients with stage IIIB/IV non-small cell lung cancer. Cancer Immunology, Immunotherapy, 68, 799–812. https://doi.org/10.1007/s00262-019-02315-x
Son, S., Nam, J., Zenkov, I., Ochyl, L. J., Xu, Y., Scheetz, L., Kubiatowicz, L. J., Kim, Y. K., and Moon, J. J. (2020). Sugar-nanocapsules imprinted with microbial molecular patterns for mRNA vaccination. Nano Letters, 20, 1499–1509. https://doi.org/10.1021/acs.nanolett.9b03483
Srinivasan, R., & Wolchok, J. D. (2004). Tumour antigens for cancer immunotherapy: Therapeutic potential of xenogeneic DNA vaccines. Journal of Translational Medicine, 2, 12. https://doi.org/10.1186/1479-5876-2-12
Thundimadathil, J. (2012). Cancer treatment using peptides: current therapies and future prospects. Journal of Amino Acids, 2012, Article ID 967347. https://doi.org/10.1155/2012/967347
Tilki, D., van den Bergh, R. C. N., Briers, E., Van den Broeck, T., Brunckhorst, O., Darraugh, J., Eberli, D., De Meerleer, G., De Santis, M., Farolfi, A., Gandaglia, G., Gillessen, S., Grivas, N., Henry, A. M., Lardas, M., van Leenders, G. J. L. H., Liew, M., Linares Espinos, E., Oldenburg, J., van Oort, I. M., … Cornford, P. (2024). EAU‑EANM‑ESTRO‑ESUR‑ISUP‑SIOG guidelines on prostate cancer. Part II‑2024 update: Treatment of relapsing and metastatic prostate cancer. European Urology, 86(2), 164–182. https://doi.org/10.1016/j.eururo.2024.04.010
To, K. K., & Cho, W. C. (2021). An overview of rational design of mRNA-based therapeutics and vaccines. Expert Opinion on Drug Discovery, 16(11), 1307–1317.
Vishweshwaraiah, Y. L., & Dokholyan, N. V. (2022). mRNA vaccines for cancer immunotherapy. Frontiers in Immunology, 13, 1029069. https://doi.org/10.3389/fimmu.2022.1029069
Wang, B., Pei, J., Xu, S., Liu, J., & Yu, J. (2023). Recent advances in mRNA cancer vaccines: Meeting challenges and embracing opportunities. Frontiers in Immunology, 14, 1246682. https://doi.org/10.3389/fimmu.2023.1246682
Wang, Z., Jacobus, E. J., Stirling, D. C., Yu, Z., Wong, K., Khandhar, A. P., Parzych, E. M., Kafai, N. M., Kim, D., Li, R., Lee, J., Remakus, S., Heisey, C., Zou, J., & MacLeod, M. K. L. (2023). Reducing cell intrinsic immunity to mRNA vaccine alters adaptive immune responses in mice. Molecular Therapy – Nucleic Acids, 31, 1–14. https://doi.org/10.1016/j.omtn.2023.102045
Weissman, D., & Karikó, K. (2015). mRNA: Fulfilling the promise of gene therapy. Molecular Therapy, 23, 1416–1417. https://doi.org/10.1038/mt.2015.138
Yaremenko, A. V., Khan, M. M., Zhen, X., Tang, Y., & Tao, W. (2025). Clinical advances of mRNA vaccines for cancer immunotherapy. Med, 6, 100562. https://doi.org/10.1016/j.medj.2024.11.015
Young, R. E., Hofbauer, S., & Riley, R. S. (2022). Overcoming the challenge of long-term storage of mRNA-lipid nanoparticle vaccines. Molecular Therapy, 30(5), 1792–1793. https://doi.org/10.1016/j.ymthe.2022.04.004
Zhang, T., Joubert, P., Ansari-Pour, N., Zhao, W., Hoang, P. H., Lokanga, R., Traini, L., Danilova, L., Berland, L., McKay, J. D., Christiani, D. C., Hung, R. J., Lam, S., Landi, M. T., Wang, Y., Foll, M., & Rotunno, M. (2021). Genomic and evolutionary classification of lung cancer in never smokers. Nature Genetics, 53, 1348–1359. https://doi.org/10.1038/s41588-021-00920-0
Zhang, X., Sharma, P. K., Goedegebuure, S. P., & Gillanders, W. E. (2017). Personalized cancer vaccines: Targeting the cancer mutanome. Vaccine, 35(9), 1094–1100. https://doi.org/10.1016/j.vaccine.2016.05.073
Zhao, Y., Gan, L., Ke, D., Chen, Q., & Fu, Y. (2023). Mechanisms and research advances in mRNA antibody drug-mediated passive immunotherapy. Journal of Translational Medicine, 21(1), 1–16. https://doi.org/10.1186/s12967-023-04553-1
Views:
56
Downloads:
16
Copyright (c) 2025 Adrian Krzysztof Biernat, Agnieszka Floriańczyk, Ewa Romanowicz, Aleksandra Kołdyj, Agnieszka Ozdarska, Marcin Lampart, Anna Rupińska, Kamila Krzewska, Hanna Skarakhodava

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.