A REVIEW OF mRNA VACCINES IN PROSTATE AND LUNG CANCER THERAPY: MECHANISMS, CLINICAL APPLICATIONS AND DEVELOPMENT DIRECTIONS

Keywords: mRNA-Based Cancer Vaccines, Clinical Trials, Prostate Cancer, Lung Cancer, Neoantigen, Lipid Nanoparticles

Abstract

mRNA vaccines constitute a new class of anticancer therapy, enabling precise stimulation of the immune system through the expression of tumour antigens. The success of COVID-19 vaccines has accelerated their development and has opened up new therapeutic possibilities in oncology. The aim of the review is to discuss the current state of knowledge on the mechanisms of action, clinical applications, and directions for the development of mRNA vaccines in cancer therapy. The study reviews scientific literature on the therapeutic use of mRNA vaccines in the treatment of prostate and lung cancer. The data include scientific publications from 2003 to 2025, published in the PubMed and Scopus databases. mRNA vaccines have shown promising efficacy in the treatment of advanced prostate cancer (CV9103, CV9104), non-small cell lung cancer (CV9201, CV9202, mRNA-5671/V941). The use of lipid nanocarriers (LNPs) significantly improves vaccine stability and immunogenicity. Combination therapies with immune checkpoint inhibitors (ICIs) demonstrate synergistic effects. mRNA vaccines present a promising strategy in cancer immunotherapy but require further research into formulation stability, the accuracy of antigen selection, and the predictability of immune responses. Furthermore, advancements in LNP technology and personalised medicine supported by artificial intelligence could markedly improve the clinical efficacy of mRNA therapies.

References

Alameh, M. G., Tombácz, I., Bettini, E., Lederer, K., Sittplangkoon, C., Wilmore, J. R., Gaudette, B. T., Soliman, K., Pine, M., Hicks, P., Manzoni, T. B., Shirreff, L., Shah, A., Mui, B. L., Tam, Y. K., Karikó, K., Krammer, F., Bates, P., Cancro, M. P., Weissman, D., & Pardi, N. (2021). Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity, 54(12), 2877–2892.e2877. https://doi.org/10.1016/j.immuni.2021.11.001

Alameh, M. G., Weissman, D., & Pardi, N. (2022). Messenger RNA-based vaccines against infectious diseases. mRNA Vaccines, 440, 111–145. https://doi.org/10.1007/82_2020_202

Alberts, P., Sessa, C., Fiedler, U., Michaux, J., Roets, M., van Dijl, J., Bex, A., Squiban, P., Meloni, G., Dirix, L., Awada, A., & Hoos, A. (2020). A phase I study of CV9103, a novel mRNA vaccine for prostate cancer, demonstrates safety and T cell immunogenicity. Cancer Immunology, Immunotherapy, 69(4), 547–556. https://doi.org/10.1007/s00262-019-02446-3

Alburquerque-González, B., López-Abellán, M. D., Luengo-Gil, G., Montoro-García, S., & Conesa-Zamora, P. (2022). Design of personalized neoantigen RNA vaccines against cancer based on next-generation sequencing data. Methods in Molecular Biology, 2547, 165–185. https://doi.org/10.1007/978-1-0716-2573-6_7

Anindita, J., Tanaka, H., Yamakawa, T., Sato, Y., Matsumoto, C., Ishizaki, K., Oyama, T., Suzuki, S., Ueda, K., Higashi, K., Moribe, K., Sasaki, K., Ogura, Y., Yonemochi, E., Sakurai, Y., Hatakeyama, H., & Akita, H. (2024). The effect of cholesterol content on the adjuvant activity of nucleic-acid‑free lipid nanoparticles. Pharmaceutics, 16(2), Article 181. https://doi.org/10.3390/pharmaceutics16020181

Asplund, A., Edqvist, P. H. D., Schwenk, J. M., & Pontén, F. (2012). Antibodies for profiling the human proteome—The Human Protein Atlas as a resource for cancer research. Proteomics, 12(13), 2067–2077. https://doi.org/10.1002/pmic.201100504

Baden, L. R., El Sahly, H. M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S. A., Rouphael, N., Creech, C. B., McGettigan, J., Khetan, S., Segall, N., Solis, J., Brosz, A., Fierro, C., Schwartz, H., Neuzil, K., Corey, L., … Zaks, T. (2021). Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. The New England Journal of Medicine, 384(5), 403–416. https://doi.org/10.1056/nejmoa2035389

Baiersdörfer, M., Boros, G., Muramatsu, H., et al. (2019). A facile method for the removal of dsRNA contaminant from in vitro-transcribed mRNA. Molecular Therapy - Nucleic Acids, 15, 26–35. https://doi.org/10.1016/j.omtn.2019.02.018

Barrangou, R. (2024). Five years of progress in CRISPR clinical trials (2019–2024). CRISPR Journal, 7, 227–230. https://doi.org/10.1089/crispr.2024.0081

Bernal, A., Bechler, A. J., Mohan, K., Rizzino, A., & Mathew, G. (2024). The current therapeutic landscape for metastatic prostate cancer. Pharmaceuticals, 17(351). https://doi.org/10.3390/ph17030351

Bhopal, A., Peake, M. D., Gilligan, D., & Cosford, P. (2019). Lung cancer in never-smokers: A hidden disease. Journal of the Royal Society of Medicine, 112, 269–271. https://doi.org/10.1177/0141076819843654

Biswas, N., Chakrabarti, S., Padul, V., Jones, L. D., & Ashili, S. (2023). Designing neoantigen cancer vaccines, trials, and outcomes. Frontiers in Immunology, 14, 1105420. https://doi.org/10.3389/fimmu.2023.1105420

Blanchard, E. L., Loomis, K. H., Bhosle, S. M., Vanover, D., Baumhof, P., Pitard, B., et al. (2019). Proximity ligation assays for in situ detection of innate immune activation: Focus on in vitro-transcribed mRNA. Molecular Therapy - Nucleic Acids, 14, 52–66. https://doi.org/10.1016/j.omtn.2018.11.002

Blass, E., & Ott, P. A. (2021). Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nature Reviews Clinical Oncology, 18, 215–229. https://doi.org/10.1038/s41571-020-00460-2

Bloom, K., van den Berg, F., & Arbuthnot, P. (2021). Self-amplifying RNA vaccines for infectious diseases. Gene Therapy, 28, 117–129. https://doi.org/10.1038/s41434-020-00204-y

Bollu, A., Peters, A., & Rentmeister, A. (2022). Chemo-enzymatic modification of the 5′ cap to study mRNAs. Accounts of Chemical Research, 55(9), 1249–1261. https://doi.org/10.1021/acs.accounts.2c00059

Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., & Jemal, A. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 74, 229–263. https://doi.org/10.3322/caac.21834

Buonaguro, L., & Tagliamonte, M. (2023). Peptide-based vaccine for cancer therapies. Frontiers in Immunology, 14, 1210044. https://doi.org/10.3389/fimmu.2023.1210044

Chaudhary, N., Kasiewicz, L. N., Newby, A. N., Arral, M. L., Yerneni, S. S., Melamed, J. R., Castro-Dopico, T., Sevimli, S., Fenton, O. S., Haupt, J., Lin, P. J. C., Cohen, J. L., Grosz, J., Sinnen, B. L., Smith, T. T., Drage, M. G., Swanson, P. A., Franco, I., Engelhart, C. A., & Jewell, C. M. (2024). Amine headgroups in ionizable lipids drive immune responses to lipid nanoparticles by binding to the receptors TLR4 and CD1d. Nature Biomedical Engineering, 8, 1483–1498. https://doi.org/10.1038/s41551-024-01256-w

Corbett, K. S., Edwards, D. K., Leist, S. R., Abiona, O. M., Boyoglu-Barnum, S., Gillespie, R. A., Himansu, S., Schäfer, A., Ziwawo, C. T., DiPiazza, A. T., Dinnon, K. H., Elbashir, S. M., Shaw, C. A., Woods, A., Fritch, E. J., Martinez, D. R., Bock, K. W., Minai, M., Nagata, B. M., ... Graham, B. S. (2020). SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature, 586(7830), 567–571. https://doi.org/10.1038/s41586-020-2622-0

Cornford, P., et al. (2024). EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer-2024 update. Part I: Screening, diagnosis, and local treatment with curative intent. European Urology, 86, 148–163.

Drazkowska, K., Tomecki, R., Warminski, M., Kudla, G., Rudzka, J., Flis, K., Sikorski, P. J., Sadowski, J., Nowis, D., Golab, J., Kowalska, J., & Jemielity, J. (2022). 2′-O-methylation of the second transcribed nucleotide within the mRNA 5′ cap impacts protein production in a cell-specific manner and contributes to RNA immune evasion. Nucleic Acids Research, 50(16), 9051–9071. https://doi.org/10.1093/nar/gkac722

Fan, T., Huang, G., Liu, Y., Tan, J., Liu, Y., Li, Y., Lin, X., & Pan, Z. (2023). Therapeutic cancer vaccines: Advancements, challenges, and prospects. Signal Transduction and Targeted Therapy, 8, 450. https://doi.org/10.1038/s41392-023-01674-3

Fang, E., Liu, X., Li, M., Zhang, Z., Song, L., Zhu, B., Wu, X., Li, G., Liu, Y., Li, J., Zhao, D., Zhang, X., Zhang, Y., & Wu, J. (2022). Advances in COVID-19 mRNA vaccine development. Signal Transduction and Targeted Therapy, 7(1), 94. https://doi.org/10.1038/s41392-022-00950-y

Fang, E., Liu, X., Li, M., Zhang, Z., Song, L., Zhu, B., Wu, X., Li, G., Liu, Y., Li, J., Zhao, D., Zhang, X., Zhang, Y., & Wu, J. (2022). Advances in COVID-19 mRNA vaccine development. Signal Transduction and Targeted Therapy, 7(1), 94. https://doi.org/10.1038/s41392-022-00950-y

Foster, J. B., Choudhari, N., Perazzelli, J., Storm, J., Hofmann, T. J., Jain, P., Lopez, M., Secreto, A., Shah, N., Barrett, D. M., & Melenhorst, J. J. (2019). Purification of mRNA encoding chimeric antigen receptor is critical for generation of a robust T-cell response. Human Gene Therapy, 30(2), 168–178. https://doi.org/10.1089/hum.2018.145

Heidenreich, A., Rawal, S., Szkarlat, K., Bogdanova, N., Dirix, L., Birtle, A., Hoos, A., de la Motte Rouge, T., Feyerabend, S., & Gandi, C. (2017). Randomized phase II trial of the mRNA vaccine CV9104 in patients with advanced castration-resistant prostate cancer. Journal of Clinical Oncology, 35(suppl), Abstract 5063. https://doi.org/10.1200/JCO.2017.35.15_suppl.5063

Henderson, H. (2024). CRISPR clinical trials: A 2024 update. IGI News, 13 March.

Hou, X., Zaks, T., Langer, R., & Dong, Y. (2021). Lipid nanoparticles for mRNA delivery. Nature Reviews Materials, 6(12), 1078–1094. https://doi.org/10.1038/s41578-021-00358-0

Jamal-Hanjani, M., Quezada, S. A., Larkin, J., & Swanton, C. (2015). Translational implications of tumor heterogeneity. Clinical Cancer Research, 21, 1258–1266. https://doi.org/10.1158/1078-0432.ccr-14-1429

Jarvis, T. C., Bouhana, K. S., Lesch, M. E., Brown, S. A., Parry, T. J., Schrier, D. J., Hunt, S. W., Pavco, P. A., & Flory, C. M. (2000). Ribozymes as tools for therapeutic target validation in arthritis. The Journal of Immunology, 165(1), 493–500. https://doi.org/10.4049/jimmunol.165.1.493

Karikó, K., Buckstein, M., Ni, H., & Weissman, D. (2005). Suppression of RNA recognition by Toll-like receptors: The impact of nucleoside modification and the evolutionary origin of RNA. Immunity, 23(2), 165–175. https://doi.org/10.1016/j.immuni.2005.06.008

Kesch, C., Heidegger, I., Kasivisvanathan, V., Kretschmer, A., Marra, G., Preisser, F., Mazzone, E., Tian, Z., Shariat, S. F., Saad, F., Tilki, D., & Chun, F. K. (2021). Radical prostatectomy: Sequelae in the course of time. Frontiers in Surgery, 8, 684088. https://doi.org/10.3389/fsurg.2021.684088

Kim, J., Eygeris, Y., Gupta, M., & Sahay, G. (2021). Self-assembled mRNA vaccines. Advanced Drug Delivery Reviews, 170, 83–112. https://doi.org/10.1016/j.addr.2020.12.014

Kim, S. C., Sekhon, S. S., Shin, W. R., Ahn, G., Cho, B., & Kim, Y. S. (2021). Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency. Molecular & Cellular Toxicology, 17(1), 1–8. https://doi.org/10.1007/s13273-021-00171-4

Kiousi, E., Lyraraki, V., Mardiki, G. L., Stachika, N., Damianou, A. K., Malainou, C. P., Karakasiliotis, I., Vlachakis, D., & Paraskevis, D. (2023). Progress and challenges of messenger RNA vaccines in the therapeutics of NSCLC. Cancers, 15, 5589. https://doi.org/10.3390/cancers15235589

Klingemann, A. (2022). The era of AI-designed cancer vaccines. Nature Biotechnology, 40, 1700–1701. https://doi.org/10.1038/s41587-022-01587-9

Kranz, L. M., Diken, M., Haas, H., Kreiter, S., Loquai, C., Reuter, K. C., Meng, M., Fritz, D., Vascotto, F., Hefesha, H., Grunwitz, C., Vormehr, M., Hüsemann, Y., Selmi, A., Kuhn, A. N., Buck, J., Derhovanessian, E., Rae, R., Attig, S., Diekmann, J., ... Sahin, U. (2016). Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature, 534(7607), 396–401. https://doi.org/10.1038/nature18300

Kübler, H., Scheel, B., Gnad-Vogt, U., Miller, K., Schultze-Seemann, W., Vom Dorp, F., Hampel, C., Wedel, S., Lukacs-Kornek, V., Reinhardt, C., Fritsche, J., Hoerr, I., Fotin-Mleczek, M., Schlake, T., & Türeci, Ö. (2015). Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: A first-in-man phase I/IIa study. Journal for ImmunoTherapy of Cancer, 3(1), 10. https://doi.org/10.1186/s40425-015-0068-y

Lahiri, A., Maji, A., Potdar, P. D., Singh, N., Parikh, P., Bisht, B., Bhatnagar, S., Verma, R., Bhardwaj, A., Das, P., Chawla, R., Kumar, D., Bakhshi, S., Malhotra, P., Dwarakanath, B. S., Bhatt, M. L. B., & Vishnubhatla, S. (2023). Lung cancer immunotherapy: Progress, pitfalls, and promises. Molecular Cancer, 22, 40. https://doi.org/10.1186/s12943-023-01740-y

Li, W., et al. (2024). mRNA cancer vaccines: Advances, trends and future directions. Journal of Hematology & Oncology, 17(38). https://doi.org/10.1186/s13045-025-01694-2

Li, Y., Zhang, X., Luo, L., Wu, W., Zhang, Y., Chen, X., Li, H., Zhou, D., & Fan, J. (2023). mRNA vaccine in cancer therapy: Current advance and future outlook. Clinical and Translational Medicine. https://doi.org/10.1002/ctm2.1384

Linch, M., Papai, Z., Takacs, I., Devi, L. A., Gray, N., Bolis, G., Carbone, D. P., Rodon, J., Genta, S., Tureci, Ö., Sahin, U., & Gnad-Vogt, U. (2021). A first-in-human phase I/IIa clinical trial assessing a ribonucleic acid lipoplex (RNA-LPX) encoding shared tumor antigens for immunotherapy of prostate cancer: Preliminary analysis of PRO-MERIT. Journal for ImmunoTherapy of Cancer, 9(Suppl 2), A448–A449.

Liu, D., Li, Y., Wang, J., Chen, X., Zhang, H., Zhao, L., Sun, Y., Liu, Q., & Wang, X. (2024). Advancements and challenges in peptide-based cancer vaccination: A multidisciplinary perspective. Vaccines, 12, 950. https://doi.org/10.3390/vaccines12080950

Lorentzen, C. L., Haanen, J. B., Met, Ø., & Svane, I. M. (2022). Clinical advances and ongoing trials of mRNA vaccines for cancer treatment. The Lancet Oncology, 23, e450–e458. https://doi.org/10.1016/s1470-2045(22)00372-2

Lowrance, W., Cookson, M. S., Lotan, Y., Davis, J. W., Hayn, M. H., Higano, C. S., Holzbeierlein, J. M., Shore, N. D., & Morgan, T. M. (2023). Updates to advanced prostate cancer: AUA/SUO guideline. Journal of Urology, 209, 1082–1090. https://doi.org/10.1097/JU.0000000000003452

Lu, Y. C., Yao, X., Crystal, J. S., Li, Y. F., El-Gamil, M., Gross, C., Dudley, M. E., Yang, J. C., Samuels, Y., Rosenberg, S. A., & Robbins, P. F. (2014). Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumour regressions. Clinical Cancer Research, 20(13), 3401–3410. https://doi.org/10.1158/1078-0432.CCR-14-0433

Marino, F. Z., Bianco, R., Accardo, M., Ronchi, A., Cozzolino, I., Morgillo, F., Montanino, A., Belli, G., & Rossi, G. (2019). Molecular heterogeneity in lung cancer: From mechanisms of origin to clinical implications. International Journal of Medical Sciences, 16, 981–989. https://doi.org/10.7150/ijms.34739

McKay, P. F., Hu, K., Blakney, A. K., Samnuan, K., Brown, J. C., Penn, R., Zhou, J., Bouton, C. R., Rogers, P., Polra, K., King, D. F. L., Shattock, R. J. (2020). Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. Nature Communications, 11, 3523. https://doi.org/10.1038/s41467-020-17409-9

McNeel, D. G., Eickhoff, J. C., Wargowski, E., Zahm, C. D., Staab, M. J., Wong, H. C., Guo, C., Disis, M. L., Liu, G., & Hankey, K. G. (2018). Concurrent, but not sequential, PD-1 blockade with a DNA vaccine elicits anti-tumor responses in patients with metastatic, castration-resistant prostate cancer. Oncotarget, 9, 25586–25596. https://doi.org/10.18632/oncotarget.25387

McNeel, D. G., Eickhoff, J. C., Zahm, C. D., Staab, M. J., Wong, H. C., Disis, M. L., Liu, G., Hankey, K. G., & Mahvi, D. A. (2022). Phase 2 trial of T-cell activation using MVI-816 and pembrolizumab in patients with metastatic, castration-resistant prostate cancer. Journal for ImmunoTherapy of Cancer, 10, e004198. https://doi.org/10.1136/jitc-2021-004198

Miao, L., Zhang, Y., & Huang, L. (2021). mRNA vaccine for cancer immunotherapy. Molecular Cancer, 20, 41. https://doi.org/10.1186/s12943-021-01335-5

Morse, M. A., Nair, S. K., Mosca, P. J., Hobeika, A. C., Clay, T. M., Deng, Y., Bishop, D. K., Booker, J., & Lyerly, H. K. (2003). Immunotherapy with autologous, human dendritic cells transfected with carcinoembryonic antigen mRNA. Cancer Investigation, 21, 341–349. https://doi.org/10.1081/CNV-120018224

Mulroney, T. E., Pöyry, T., Yam-Puc, J. C., Peralta, A., Ganesan, S. S., Kumar, P., Barna, M., Atkins, J. F., & Finkelstein, D. B. (2024). N1-methylpseudouridylation of mRNA causes +1 ribosomal frameshifting. Nature, 625(7993), 189–194. https://doi.org/10.1038/s41586-023-06800-3

Mundhara, N., & Sadhukhan, P. (2024). Cracking the codes behind cancer cells’ immune evasion. International Journal of Molecular Sciences, 25, 8899. https://doi.org/10.3390/ijms25168899

Papachristofilou, A., Hipp, M. M., Klinkhardt, U., Früh, M., Sebastian, M., Weiss, C., Cathomas, R., Hilbe, W., Pall, G., Ochsenbein, A. F., Rothschild, S. I., Joerger, M., Droege, C., Kasenda, B., Siano, M., Schmid, R. A., Ochsenbein, S., Hoerr, I., Fotin-Mleczek, M., & Murer, C. (2019). Phase Ib evaluation of a self-adjuvanted protamine-formulated mRNA-based active cancer immunotherapy, BI1361849 (CV9202), combined with local radiation treatment in patients with stage IV non-small cell lung cancer. Journal for ImmunoTherapy of Cancer, 7, 38. https://doi.org/10.1186/s40425-019-0520-5

Pardi, N., Hogan, M. J., Porter, F. W., & Weissman, D. (2018). mRNA vaccines—a new era in vaccinology. Nature Reviews Drug Discovery, 17(4), 261–279. https://doi.org/10.1038/nrd.2017.243

Pardi, N., Zoltick, P. W., & Weissman, D. (2024). mRNA vaccines for cancer immunotherapy. Pharmacology & Therapeutics, 249, 108461. https://doi.org/10.1016/j.pharmthera.2024.108461

Perez, C. R., & De Palma, M. (2019). Engineering dendritic cell vaccines to improve cancer immunotherapy. Nature Communications, 10, 5408. https://doi.org/10.1038/s41467-019-13368-y

Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J. L., Pérez Marc, G., Moreira, E. D., Zerbini, C., Bailey, R., Swanson, K. A., Roychoudhury, S., Koury, K., Li, P., Kalina, W. V., Cooper, D., Frenck, R. W., Hammitt, L. L., Türeci, Ö., … Gruber, W. C. (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. The New England Journal of Medicine, 383(27), 2603–2615. https://doi.org/10.1056/NEJMoa2034577

Qin, S., Tang, X., Chen, Y., Chen, K., Fan, N., Xiao, W., Xie, C., Han, L., Qi, X., & Zhang, C. (2022). mRNA-based therapeutics: Powerful and versatile tools to combat diseases. Signal Transduction and Targeted Therapy, 7, 166. https://doi.org/10.1038/s41392-022-00969-1

Ramadan, E., Ahmed, A., & Naguib, Y. W. (2024). Advances in mRNA LNP-based cancer vaccines: Mechanisms, formulation aspects, challenges, and future directions. Journal of Personalized Medicine, 14, 1092. https://doi.org/10.3390/jpm14111092

Ramos, R., Nuno, V., & Vale, V. (2024). Emerging immunotherapies in lung cancer: The latest. Vaccines, 13(5), 476. https://doi.org/10.3390/vaccines13050476

Rausch, S., Schwentner, C., Stenzl, A., & Bedke, J. (2014). mRNA vaccine CV9103 and CV9104 for the treatment of prostate cancer. Human Vaccines & Immunotherapeutics, 10, 3146–3152. https://doi.org/10.4161/hv.29553

Raychaudhuri, R., Lin, D. W., & Montgomery, R. B. (2025). Prostate cancer: A review. JAMA, 333, 1433–1446. https://doi.org/10.1001/jama.2025.0228

Ribas, A., & Wolchok, J. D. (2018). Cancer immunotherapy using checkpoint blockade. Science, 359(6382), 1350–1355. https://doi.org/10.1126/science.aar4060

Rossino, G., Palomba, T., Ventura, C. A., De Luca, L., Parisi, O. I., & Puoci, F. (2023). Peptides as therapeutic agents: Challenges and opportunities in the green transition era. Molecules, 28(20), 7165. https://doi.org/10.3390/molecules28207165

Sahin, U., & Türeci, Ö. (2018). Personalized vaccines for cancer immunotherapy. Science, 359(6382), 1355–1360. https://doi.org/10.1126/science.aar7112

Sahin, U., Derhovanessian, E., Miller, M., Kloke, B. P., Simon, P., Löwer, M., Bukur, V., Tadmor, A. D., Luxemburger, U., Schrörs, B., Omokoko, T., Vormehr, M., Albrecht, C., Paruzynski, A., Kuhn, A. N., Buck, J., Heesch, S., Schreeb, K. H., Müller, F., … Türeci, Ö. (2017). Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 547(7662), 222–226. https://doi.org/10.1038/nature23003

Sanaei, M.-J., Pourbagheri-Sigaroodi, A., Rezvani, A., Zaboli, E., Salari, S., Masjedi, M. R., & Bashash, D. (2024). Lung cancer vaccination from concept to reality: A critical review of clinical trials and latest advances. Life Sciences, 346, 122652. https://doi.org/10.1016/j.lfs.2024.122652

Saxena, M., van der Burg, S. H., Melief, C. J., & Bhardwaj, N. (2021). Therapeutic cancer vaccines. Nature Reviews Cancer, 21(6), 360–378. https://doi.org/10.1038/s41568-021-00346-0

Sebastian, M., Schröder, A., Scheel, B., Hong, H. S., Muth, A., Von Boehmer, L., Loew-Baselli, A., Graeven, U., Kühn, W., Huber, C., Türeci, Ö., & Sahin, U. (2019). A phase I/IIa study of the mRNA-based cancer immunotherapy CV9201 in patients with stage IIIB/IV non-small cell lung cancer. Cancer Immunology, Immunotherapy, 68, 799–812. https://doi.org/10.1007/s00262-019-02315-x

Son, S., Nam, J., Zenkov, I., Ochyl, L. J., Xu, Y., Scheetz, L., Kubiatowicz, L. J., Kim, Y. K., and Moon, J. J. (2020). Sugar-nanocapsules imprinted with microbial molecular patterns for mRNA vaccination. Nano Letters, 20, 1499–1509. https://doi.org/10.1021/acs.nanolett.9b03483

Srinivasan, R., & Wolchok, J. D. (2004). Tumour antigens for cancer immunotherapy: Therapeutic potential of xenogeneic DNA vaccines. Journal of Translational Medicine, 2, 12. https://doi.org/10.1186/1479-5876-2-12

Thundimadathil, J. (2012). Cancer treatment using peptides: current therapies and future prospects. Journal of Amino Acids, 2012, Article ID 967347. https://doi.org/10.1155/2012/967347

Tilki, D., van den Bergh, R. C. N., Briers, E., Van den Broeck, T., Brunckhorst, O., Darraugh, J., Eberli, D., De Meerleer, G., De Santis, M., Farolfi, A., Gandaglia, G., Gillessen, S., Grivas, N., Henry, A. M., Lardas, M., van Leenders, G. J. L. H., Liew, M., Linares Espinos, E., Oldenburg, J., van Oort, I. M., … Cornford, P. (2024). EAU‑EANM‑ESTRO‑ESUR‑ISUP‑SIOG guidelines on prostate cancer. Part II‑2024 update: Treatment of relapsing and metastatic prostate cancer. European Urology, 86(2), 164–182. https://doi.org/10.1016/j.eururo.2024.04.010

To, K. K., & Cho, W. C. (2021). An overview of rational design of mRNA-based therapeutics and vaccines. Expert Opinion on Drug Discovery, 16(11), 1307–1317.

Vishweshwaraiah, Y. L., & Dokholyan, N. V. (2022). mRNA vaccines for cancer immunotherapy. Frontiers in Immunology, 13, 1029069. https://doi.org/10.3389/fimmu.2022.1029069

Wang, B., Pei, J., Xu, S., Liu, J., & Yu, J. (2023). Recent advances in mRNA cancer vaccines: Meeting challenges and embracing opportunities. Frontiers in Immunology, 14, 1246682. https://doi.org/10.3389/fimmu.2023.1246682

Wang, Z., Jacobus, E. J., Stirling, D. C., Yu, Z., Wong, K., Khandhar, A. P., Parzych, E. M., Kafai, N. M., Kim, D., Li, R., Lee, J., Remakus, S., Heisey, C., Zou, J., & MacLeod, M. K. L. (2023). Reducing cell intrinsic immunity to mRNA vaccine alters adaptive immune responses in mice. Molecular Therapy – Nucleic Acids, 31, 1–14. https://doi.org/10.1016/j.omtn.2023.102045

Weissman, D., & Karikó, K. (2015). mRNA: Fulfilling the promise of gene therapy. Molecular Therapy, 23, 1416–1417. https://doi.org/10.1038/mt.2015.138

Yaremenko, A. V., Khan, M. M., Zhen, X., Tang, Y., & Tao, W. (2025). Clinical advances of mRNA vaccines for cancer immunotherapy. Med, 6, 100562. https://doi.org/10.1016/j.medj.2024.11.015

Young, R. E., Hofbauer, S., & Riley, R. S. (2022). Overcoming the challenge of long-term storage of mRNA-lipid nanoparticle vaccines. Molecular Therapy, 30(5), 1792–1793. https://doi.org/10.1016/j.ymthe.2022.04.004

Zhang, T., Joubert, P., Ansari-Pour, N., Zhao, W., Hoang, P. H., Lokanga, R., Traini, L., Danilova, L., Berland, L., McKay, J. D., Christiani, D. C., Hung, R. J., Lam, S., Landi, M. T., Wang, Y., Foll, M., & Rotunno, M. (2021). Genomic and evolutionary classification of lung cancer in never smokers. Nature Genetics, 53, 1348–1359. https://doi.org/10.1038/s41588-021-00920-0

Zhang, X., Sharma, P. K., Goedegebuure, S. P., & Gillanders, W. E. (2017). Personalized cancer vaccines: Targeting the cancer mutanome. Vaccine, 35(9), 1094–1100. https://doi.org/10.1016/j.vaccine.2016.05.073

Zhao, Y., Gan, L., Ke, D., Chen, Q., & Fu, Y. (2023). Mechanisms and research advances in mRNA antibody drug-mediated passive immunotherapy. Journal of Translational Medicine, 21(1), 1–16. https://doi.org/10.1186/s12967-023-04553-1

Views:

56

Downloads:

16

Published
2025-07-31
Citations
How to Cite
Adrian Krzysztof Biernat, Agnieszka Floriańczyk, Ewa Romanowicz, Aleksandra Kołdyj, Agnieszka Ozdarska, Marcin Lampart, Anna Rupińska, Kamila Krzewska, & Hanna Skarakhodava. (2025). A REVIEW OF mRNA VACCINES IN PROSTATE AND LUNG CANCER THERAPY: MECHANISMS, CLINICAL APPLICATIONS AND DEVELOPMENT DIRECTIONS. International Journal of Innovative Technologies in Social Science, 1(3(47). https://doi.org/10.31435/ijitss.3(47).2025.3510

Most read articles by the same author(s)