THE ROLE OF DIETARY PATTERNS AND NUTRIENTS IN SCHIZOPHRENIA: A LITERATURE REVIEW
Abstract
Schizophrenia is a complex psychiatric disorder with multifactorial pathophysiology, involving neuroinflammation, oxidative stress, and metabolic disturbances. In recent years, increasing attention has been directed toward the role of diet in modulating mental health, including the onset and progression of schizophrenia. This review explores the potential impact of specific nutrients, dietary patterns, and gut microbiota on schizophrenia-related mechanisms. Evidence suggests that the Mediterranean diet, rich in anti-inflammatory and antioxidant compounds, may exert neuroprotective effects, while the Western diet appears to aggravate inflammatory and metabolic dysregulation. The ketogenic diet has also demonstrated potential benefits through modulation of neurotransmission and mitochondrial function, though its restrictive nature may limit adherence. A central element in these interactions is the gut-brain axis, with the gut microbiota emerging as a key mediator linking dietary factors to central nervous system function. Despite promising findings, current research is limited by a predominance of observational studies. Further randomized controlled trials are needed to assess the therapeutic value of dietary interventions and microbiota-targeted strategies in schizophrenia management.
References
Owen, M. J., Sawa, A., & Mortensen, P. B. (2016). Schizophrenia. Lancet, 388(10039), 86–97. https://doi.org/10.1016/S0140-6736(15)01121-6
Solmi, M., Seitidis, G., Mavridis, D., et al. (2023). Incidence, prevalence, and global burden of schizophrenia - data, with critical appraisal, from the Global Burden of Disease (GBD) 2019. Molecular Psychiatry, 28(12), 5319–5327. https://doi.org/10.1038/s41380-023-02138-4
Ruiz-Castañeda, P., Santiago Molina, E., Aguirre Loaiza, H., & Daza González, M. T. (2022). Positive symptoms of schizophrenia and their relationship with cognitive and emotional executive functions. Cognitive Research: Principles and Implications, 7(1), 78. https://doi.org/10.1186/s41235-022-00428-z
Correll, C. U., & Schooler, N. R. (2020). Negative symptoms in schizophrenia: A review and clinical guide for recognition, assessment, and treatment. Neuropsychiatric Disease and Treatment, 16, 519–534. https://doi.org/10.2147/NDT.S225643
Javitt, D. C. (2023). Cognitive impairment associated with schizophrenia: From pathophysiology to treatment. Annual Review of Pharmacology and Toxicology, 63, 119–141. https://doi.org/10.1146/annurev-pharmtox-051921-093250
Huxley, P., Krayer, A., Poole, R., Prendergast, L., Aryal, S., & Warner, R. (2021). Schizophrenia outcomes in the 21st century: A systematic review. Brain and Behavior, 11(6), e02172. https://doi.org/10.1002/brb3.2172
Loots, E., Goossens, E., Vanwesemael, T., Morrens, M., Van Rompaey, B., & Dilles, T. (2021). Interventions to improve medication adherence in patients with schizophrenia or bipolar disorders: A systematic review and meta-analysis. International Journal of Environmental Research and Public Health, 18(19), 10213. https://doi.org/10.3390/ijerph181910213
Guo, J., Lv, X., Liu, Y., Kong, L., Qu, H., & Yue, W. (2023). Influencing factors of medication adherence in schizophrenic patients: A meta-analysis. Schizophrenia (Heidelberg), 9(1), 31. https://doi.org/10.1038/s41537-023-00356-x
Vancampfort, D., Stubbs, B., Mitchell, A. J., et al. (2015). Risk of metabolic syndrome and its components in people with schizophrenia and related psychotic disorders, bipolar disorder and major depressive disorder: A systematic review and meta-analysis. World Psychiatry, 14(3), 339–347. https://doi.org/10.1002/wps.20252
Melmed, S., Casanueva, F. F., Hoffman, A. R., et al. (2011). Diagnosis and treatment of hyperprolactinemia: An Endocrine Society clinical practice guideline. The Journal of Clinical Endocrinology & Metabolism, 96(2), 273–288. https://doi.org/10.1210/jc.2010-1692
Yazici, A. B., Akcay Ciner, O., Yazici, E., Cilli, A. S., Dogan, B., & Erol, A. (2019). Comparison of vitamin B12, vitamin D and folic acid blood levels in patients with schizophrenia, drug addiction and controls. Journal of Clinical Neuroscience, 65, 11–16. https://doi.org/10.1016/j.jocn.2019.04.031
Firth, J., Carney, R., Stubbs, B., et al. (2018). Nutritional deficiencies and clinical correlates in first-episode psychosis: A systematic review and meta-analysis. Schizophrenia Bulletin, 44(6), 1275–1292. https://doi.org/10.1093/schbul/sbx162
Frajerman, A., Scoriels, L., Kebir, O., & Chaumette, B. (2021). Shared biological pathways between antipsychotics and omega-3 fatty acids: A key feature for schizophrenia preventive treatment? International Journal of Molecular Sciences, 22(13), 6881. https://doi.org/10.3390/ijms22136881
Hsu, M. C., Huang, Y. S., & Ouyang, W. C. (2020). Beneficial effects of omega-3 fatty acid supplementation in schizophrenia: Possible mechanisms. Lipids in Health and Disease, 19(1), 159. https://doi.org/10.1186/s12944-020-01337-0
Simopoulos, A. P. (2011). Evolutionary aspects of diet: The omega-6/omega-3 ratio and the brain. Molecular Neurobiology, 44(2), 203–215. https://doi.org/10.1007/s12035-010-8162-0
Su, H. M. (2010). Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance. The Journal of Nutritional Biochemistry, 21(5), 364–373. https://doi.org/10.1016/j.jnutbio.2009.11.003
Denis, I., Potier, B., Heberden, C., & Vancassel, S. (2015). Omega-3 polyunsaturated fatty acids and brain aging. Current Opinion in Clinical Nutrition and Metabolic Care, 18(2), 139–146. https://doi.org/10.1097/MCO.0000000000000141
Guesnet, P., & Alessandri, J. M. (2011). Docosahexaenoic acid (DHA) and the developing central nervous system (CNS) - Implications for dietary recommendations. Biochimie, 93(1), 7–12. https://doi.org/10.1016/j.biochi.2010.05.005
Horrobin, D. F. (1998). The membrane phospholipid hypothesis as a biochemical basis for the neurodevelopmental concept of schizophrenia. Schizophrenia Research, 30(3), 193–208. https://doi.org/10.1016/s0920-9964(97)00151-5
Assies, J., Lieverse, R., Vreken, P., Wanders, R. J., Dingemans, P. M., & Linszen, D. H. (2001). Significantly reduced docosahexaenoic and docosapentaenoic acid concentrations in erythrocyte membranes from schizophrenic patients compared with a carefully matched control group. Biological Psychiatry, 49(6), 510–522. https://doi.org/10.1016/s0006-3223(00)00986-0
Khan, M. M., Evans, D. R., Gunna, V., Scheffer, R. E., Parikh, V. V., & Mahadik, S. P. (2002). Reduced erythrocyte membrane essential fatty acids and increased lipid peroxides in schizophrenia at the never-medicated first-episode of psychosis and after years of treatment with antipsychotics. Schizophrenia Research, 58(1), 1–10. https://doi.org/10.1016/s0920-9964(01)00334-6
van der Kemp, W. J., Klomp, D. W., Kahn, R. S., Luijten, P. R., & Hulshoff Pol, H. E. (2012). A meta-analysis of the polyunsaturated fatty acid composition of erythrocyte membranes in schizophrenia. Schizophrenia Research, 141(2-3), 153–161. https://doi.org/10.1016/j.schres.2012.08.014
Hoen, W. P., Lijmer, J. G., Duran, M., Wanders, R. J., van Beveren, N. J., & de Haan, L. (2013). Red blood cell polyunsaturated fatty acids measured in red blood cells and schizophrenia: A meta-analysis. Psychiatry Research, 207(1-2), 1–12. https://doi.org/10.1016/j.psychres.2012.09.041
Yao, J. K., Leonard, S., & Reddy, R. D. (2000). Membrane phospholipid abnormalities in postmortem brains from schizophrenic patients. Schizophrenia Research, 42(1), 7–17. https://doi.org/10.1016/s0920-9964(99)00095-x
Hamazaki, K., Maekawa, M., Toyota, T., Dean, B., Hamazaki, T., & Yoshikawa, T. (2015). Fatty acid composition of the postmortem prefrontal cortex of patients with schizophrenia, bipolar disorder, and major depressive disorder. Psychiatry Research, 227(2-3), 353–359. https://doi.org/10.1016/j.psychres.2015.01.004
Hamazaki, K., Choi, K. H., & Kim, H. Y. (2010). Phospholipid profile in the postmortem hippocampus of patients with schizophrenia and bipolar disorder: No changes in docosahexaenoic acid species. Journal of Psychiatric Research, 44(11), 688–693. https://doi.org/10.1016/j.jpsychires.2009.11.017
Stone, J. M., Morrison, P. D., & Pilowsky, L. S. (2007). Glutamate and dopamine dysregulation in schizophrenia--a synthesis and selective review. Journal of Psychopharmacology, 21(4), 440–452. https://doi.org/10.1177/0269881106073126
Ermakov, E. A., Dmitrieva, E. M., Parshukova, D. A., Kazantseva, D. V., Vasilieva, A. R., & Smirnova, L. P. (2021). Oxidative stress-related mechanisms in schizophrenia pathogenesis and new treatment perspectives. Oxidative Medicine and Cellular Longevity, 2021, 8881770. https://doi.org/10.1155/2021/8881770
Brisch, R., Saniotis, A., Wolf, R., et al. (2014). The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: Old fashioned, but still in vogue [published correction appears in Front Psychiatry, 5, 110. Braun, A. K. [corrected to Braun, K.]; Kumaritlake, J. [corrected to Kumaratilake, J.]]. Frontiers in Psychiatry, 5, 47. https://doi.org/10.3389/fpsyt.2014.00047
Amminger, G. P., Schaefer, M. R., Papageorgiou, K., et al. (2007). Omega-3 fatty acids reduce the risk of early transition to psychosis in ultra-high risk individuals: A double-blind randomized, placebo-controlled treatment study. Schizophrenia Bulletin, 33(2), 418–419.
Amminger, G. P., Schäfer, M. R., Papageorgiou, K., et al. (2010). Long-chain omega-3 fatty acids for indicated prevention of psychotic disorders: A randomized, placebo-controlled trial. Archives of General Psychiatry, 67(2), 146–154. https://doi.org/10.1001/archgenpsychiatry.2009.192
Amminger, G. P., Schäfer, M. R., Schlögelhofer, M., Klier, C. M., & McGorry, P. D. (2015). Longer-term outcome in the prevention of psychotic disorders by the Vienna omega-3 study. Nature Communications, 6, 7934. https://doi.org/10.1038/ncomms8934
Pawełczyk, T., Grancow-Grabka, M., Trafalska, E., Szemraj, J., & Pawełczyk, A. (2017). Oxidative stress reduction related to the efficacy of n-3 polyunsaturated fatty acids in first episode schizophrenia: Secondary outcome analysis of the OFFER randomized trial. Prostaglandins, Leukotrienes and Essential Fatty Acids, 121, 7–13. https://doi.org/10.1016/j.plefa.2017.05.004
Robinson, D. G., Gallego, J. A., John, M., et al. (2019). A potential role for adjunctive omega-3 polyunsaturated fatty acids for depression and anxiety symptoms in recent onset psychosis: Results from a 16 week randomized placebo-controlled trial for participants concurrently treated with risperidone. Schizophrenia Research, 204, 295–303. https://doi.org/10.1016/j.schres.2018.09.006
Chen, A. T., Chibnall, J. T., & Nasrallah, H. A. (2015). A meta-analysis of placebo-controlled trials of omega-3 fatty acid augmentation in schizophrenia: Possible stage-specific effects. Annals of Clinical Psychiatry, 27(4), 289–296.
Ducker, G. S., & Rabinowitz, J. D. (2017). One-carbon metabolism in health and disease. Cell Metabolism, 25(1), 27–42. https://doi.org/10.1016/j.cmet.2016.08.009
Nishi, A., Numata, S., Tajima, A., et al. (2014). Meta-analyses of blood homocysteine levels for gender and genetic association studies of the MTHFR C677T polymorphism in schizophrenia. Schizophrenia Bulletin, 40(5), 1154–1163. https://doi.org/10.1093/schbul/sbt154
Kale, A., Naphade, N., Sapkale, S., et al. (2010). Reduced folic acid, vitamin B12 and docosahexaenoic acid and increased homocysteine and cortisol in never-medicated schizophrenia patients: Implications for altered one-carbon metabolism. Psychiatry Research, 175(1-2), 47–53. https://doi.org/10.1016/j.psychres.2009.01.013
Ayesa-Arriola, R., Pérez-Iglesias, R., Rodríguez-Sánchez, J. M., et al. (2012). Homocysteine and cognition in first-episode psychosis patients. European Archives of Psychiatry and Clinical Neuroscience, 262(7), 557–564. https://doi.org/10.1007/s00406-012-0302-2
Eren, E., Yeğin, A., Yilmaz, N., & Herken, H. (2010). Serum total homocystein, folate and vitamin B12 levels and their correlation with antipsychotic drug doses in adult male patients with chronic schizophrenia. Clinical Laboratory, 56(11-12), 513–518.
Poddar, R., & Paul, S. (2009). Homocysteine-NMDA receptor-mediated activation of extracellular signal-regulated kinase leads to neuronal cell death. Journal of Neurochemistry, 110(3), 1095–1106. https://doi.org/10.1111/j.1471-4159.2009.06207.x
Dietrich-Muszalska, A., Malinowska, J., Olas, B., et al. (2012). The oxidative stress may be induced by the elevated homocysteine in schizophrenic patients. Neurochemical Research, 37(5), 1057–1062. https://doi.org/10.1007/s11064-012-0707-3
Roffman, J. L., Lamberti, J. S., Achtyes, E., et al. (2013). Randomized multicenter investigation of folate plus vitamin B12 supplementation in schizophrenia. JAMA Psychiatry, 70(5), 481–489. https://doi.org/10.1001/jamapsychiatry.2013.900
Cui, X., Gooch, H., Groves, N. J., et al. (2015). Vitamin D and the brain: Key questions for future research. Journal of Steroid Biochemistry and Molecular Biology, 148, 305–309. https://doi.org/10.1016/j.jsbmb.2014.11.004
Groves, N. J., McGrath, J. J., & Burne, T. H. (2014). Vitamin D as a neurosteroid affecting the developing and adult brain. Annual Review of Nutrition, 34, 117–141. https://doi.org/10.1146/annurev-nutr-071813-105557
Lasoń, W., Jantas, D., Leśkiewicz, M., Regulska, M., & Basta-Kaim, A. (2023). The vitamin D receptor as a potential target for the treatment of age-related neurodegenerative diseases such as Alzheimer's and Parkinson's diseases: A narrative review. Cells, 12(4), 660. https://doi.org/10.3390/cells12040660
Cui, X., McGrath, J. J., Burne, T. H. J., & Eyles, D. W. (2021). Vitamin D and schizophrenia: 20 years on. Molecular Psychiatry, 26(7), 2708–2720. https://doi.org/10.1038/s41380-021-01025-0
Torrey, E. F., Miller, J., Rawlings, R., & Yolken, R. H. (1997). Seasonality of births in schizophrenia and bipolar disorder: A review of the literature. Schizophrenia Research, 28(1), 1–38. https://doi.org/10.1016/s0920-9964(97)00092-3
Saha, S., Chant, D., & McGrath, J. (2008). Meta-analyses of the incidence and prevalence of schizophrenia: Conceptual and methodological issues. International Journal of Methods in Psychiatric Research, 17(1), 55–61. https://doi.org/10.1002/mpr.240
Cui, X., & Eyles, D. W. (2022). Vitamin D and the central nervous system: Causative and preventative mechanisms in brain disorders. Nutrients, 14(20), 4353. https://doi.org/10.3390/nu14204353
Mirarchi, A., Albi, E., Beccari, T., & Arcuri, C. (2023). Microglia and brain disorders: The role of vitamin D and its receptor. International Journal of Molecular Sciences, 24(15), 11892. https://doi.org/10.3390/ijms241511892
Khandaker, G. M., Cousins, L., Deakin, J., Lennox, B. R., Yolken, R., & Jones, P. B. (2015). Inflammation and immunity in schizophrenia: Implications for pathophysiology and treatment. The Lancet Psychiatry, 2(3), 258–270. https://doi.org/10.1016/S2215-0366(14)00122-9
Graham, K. A., Keefe, R. S., Lieberman, J. A., Calikoglu, A. S., Lansing, K. M., & Perkins, D. O. (2015). Relationship of low vitamin D status with positive, negative and cognitive symptom domains in people with first-episode schizophrenia. Early Intervention in Psychiatry, 9(5), 397–405. https://doi.org/10.1111/eip.12122
Tsiglopoulos, J., Pearson, N., Mifsud, N., Allott, K., & O'Donoghue, B. (2021). The association between vitamin D and symptom domains in psychotic disorders: A systematic review. Schizophrenia Research, 237, 79–92. https://doi.org/10.1016/j.schres.2021.08.001
Hajam, Y. A., Rani, R., Ganie, S. Y., et al. (2022). Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives. Cells, 11(3), 552. https://doi.org/10.3390/cells11030552
Dias, V., Junn, E., & Mouradian, M. M. (2013). The role of oxidative stress in Parkinson's disease. Journal of Parkinson’s Disease, 3(4), 461–491. https://doi.org/10.3233/JPD-130230
Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews, 4(8), 118–126. https://doi.org/10.4103/0973-7847.70902
Jin, Q., Liu, T., Qiao, Y., et al. (2023). Oxidative stress and inflammation in diabetic nephropathy: Role of polyphenols. Frontiers in Immunology, 14, 1185317. https://doi.org/10.3389/fimmu.2023.1185317
Raffa, M., Atig, F., Mhalla, A., Kerkeni, A., & Mechri, A. (2011). Decreased glutathione levels and impaired antioxidant enzyme activities in drug-naive first-episode schizophrenic patients. BMC Psychiatry, 11, 124. https://doi.org/10.1186/1471-244X-11-124
Reddy, R., Keshavan, M., & Yao, J. K. (2003). Reduced plasma antioxidants in first-episode patients with schizophrenia. Schizophrenia research, 62(3), 205–212. https://doi.org/10.1016/s0920-9964(02)00407-3
Maas, D. A., Vallès, A., & Martens, G. J. M. (2017). Oxidative stress, prefrontal cortex hypomyelination and cognitive symptoms in schizophrenia. Translational psychiatry, 7(7), e1171. https://doi.org/10.1038/tp.2017.138
Gil Martínez, V., Avedillo Salas, A., & Santander Ballestín, S. (2022). Vitamin Supplementation and Dementia: A Systematic Review. Nutrients, 14(5), 1033. https://doi.org/10.3390/nu14051033
de Araújo, F. F., de Paulo Farias, D., Neri-Numa, I. A., & Pastore, G. M. (2021). Polyphenols and their applications: An approach in food chemistry and innovation potential. Food chemistry, 338, 127535. https://doi.org/10.1016/j.foodchem.2020.127535
Munawar, N., Ahmad, A., Anwar, M. A., & Muhammad, K. (2022). Modulation of Gut Microbial Diversity through Non-Pharmaceutical Approaches to Treat Schizophrenia. International journal of molecular sciences, 23(5), 2625. https://doi.org/10.3390/ijms23052625
Martinez-Gonzalez, M. A., & Bes-Rastrollo, M. (2014). Dietary patterns, Mediterranean diet, and cardiovascular disease. Current Opinion in Lipidology, 25(1), 20–26. https://doi.org/10.1097/MOL.0000000000000044
Schwingshackl, L., & Hoffmann, G. (2015). Adherence to Mediterranean diet and risk of cancer: An updated systematic review and meta-analysis of observational studies. Cancer Medicine, 4(12), 1933–1947. https://doi.org/10.1002/cam4.539
Kastorini, C. M., Milionis, H. J., Esposito, K., et al. (2011). The effect of Mediterranean diet on metabolic syndrome and its components: A meta-analysis of 50 studies and 534,906 individuals. Journal of the American College of Cardiology, 57(11), 1299–1313. https://doi.org/10.1016/j.jacc.2010.09.073
Koloverou, E., Esposito, K., Giugliano, D., & Panagiotakos, D. (2014). The effect of Mediterranean diet on the development of type 2 diabetes mellitus: A meta-analysis of 10 prospective studies and 136,846 participants. Metabolism, 63(7), 903–911. https://doi.org/10.1016/j.metabol.2014.04.010
Lăcătușu, C. M., Grigorescu, E. D., Floria, M., Onofriescu, A., & Mihai, B. M. (2019). The Mediterranean diet: From an environment-driven food culture to an emerging medical prescription. International Journal of Environmental Research and Public Health, 16(6), 942. https://doi.org/10.3390/ijerph16060942
Román, G. C., Jackson, R. E., Gadhia, R., Román, A. N., & Reis, J. (2019). Mediterranean diet: The role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. Revue Neurologique (Paris), 175(10), 724–741. https://doi.org/10.1016/j.neurol.2019.08.005
Devranis, P., Vassilopoulou, Ε., Tsironis, V., et al. (2023). Mediterranean diet, ketogenic diet or MIND diet for aging populations with cognitive decline: A systematic review. Life, 13(1), 173. https://doi.org/10.3390/life13010173
Petersson, S. D., & Philippou, E. (2016). Mediterranean diet, cognitive function, and dementia: A systematic review of the evidence. Advances in Nutrition, 7(5), 889–904. https://doi.org/10.3945/an.116.012138
Merra, G., Noce, A., Marrone, G., et al. (2020). Influence of Mediterranean diet on human gut microbiota. Nutrients, 13(1), 7. https://doi.org/10.3390/nu13010007
Lopez‑Legarreta, A., Fernandini, H., Hemelsoet, A., et al. (2011). The Western diet and lifestyle and diseases of civilization. Research Reports in Clinical Cardiology, 2(2), 2–15. https://doi.org/10.2147/RRCC.S16919
Clemente-Suárez, V. J., Beltrán-Velasco, A. I., Redondo-Flórez, L., Martín-Rodríguez, A., & Tornero-Aguilera, J. F. (2023). Global impacts of Western diet and its effects on metabolism and health: A narrative review. Nutrients, 15(12), 2749. https://doi.org/10.3390/nu15122749
Malik, V. S., Li, Y., Tobias, D. K., Pan, A., & Hu, F. B. (2016). Dietary protein intake and risk of type 2 diabetes in US men and women. American Journal of Epidemiology, 183(8), 715–728. https://doi.org/10.1093/aje/kwv268
Hunter, J. E., Zhang, J., & Kris-Etherton, P. M. (2010). Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: A systematic review. American Journal of Clinical Nutrition, 91(1), 46–63. https://doi.org/10.3945/ajcn.2009.27661
Chun, Y. J., Sohn, S. K., Song, H. K., et al. (2015). Associations of colorectal cancer incidence with nutrient and food group intakes in Korean adults: A case-control study. Clinical Nutrition Research, 4(2), 110–123. https://doi.org/10.7762/cnr.2015.4.2.110
Pistell, P. J., Morrison, C. D., Gupta, S., et al. (2010). Cognitive impairment following high fat diet consumption is associated with brain inflammation. Journal of Neuroimmunology, 219(1-2), 25–32. https://doi.org/10.1016/j.jneuroim.2009.11.010
Christ, A., Lauterbach, M., & Latz, E. (2019). Western diet and the immune system: An inflammatory connection. Immunity, 51(5), 794–811. https://doi.org/10.1016/j.immuni.2019.09.020
Myles, I. A. (2014). Fast food fever: Reviewing the impacts of the Western diet on immunity. Nutrition Journal, 13, 61. https://doi.org/10.1186/1475-2891-13-61
Malesza, I. J., Malesza, M., Walkowiak, J., et al. (2021). High-fat, Western-style diet, systemic inflammation, and gut microbiota: A narrative review. Cells, 10(11), 3164. https://doi.org/10.3390/cells10113164
Jakobsen, A. S., Speyer, H., Nørgaard, H. C. B., et al. (2018). Dietary patterns and physical activity in people with schizophrenia and increased waist circumference. Schizophrenia Research, 199, 109–115. https://doi.org/10.1016/j.schres.2018.03.016
Tsuruga, K., Sugawara, N., Sato, Y., et al. (2015). Dietary patterns and schizophrenia: A comparison with healthy controls. Neuropsychiatric Disease and Treatment, 11, 1115–1120. https://doi.org/10.2147/NDT.S74760
Tahreem, A., Rakha, A., Rabail, R., et al. (2022). Fad diets: Facts and fiction. Frontiers in Nutrition, 9, 960922. https://doi.org/10.3389/fnut.2022.960922
Zhou, C., Wang, M., Liang, J., He, G., & Chen, N. (2022). Ketogenic diet benefits to weight loss, glycemic control, and lipid profiles in overweight patients with type 2 diabetes mellitus: A meta-analysis of randomized controlled trails. International Journal of Environmental Research and Public Health, 19(16), 10429. https://doi.org/10.3390/ijerph191610429
Dyńka, D., Kowalcze, K., Charuta, A., & Paziewska, A. (2023). The ketogenic diet and cardiovascular diseases. Nutrients, 15(15), 3368. https://doi.org/10.3390/nu15153368
Pizzo, F., Collotta, A. D., Di Nora, A., Costanza, G., Ruggieri, M., & Falsaperla, R. (2022). Ketogenic diet in pediatric seizures: A randomized controlled trial review and meta-analysis. Expert Review of Neurotherapeutics, 22(2), 169–177. https://doi.org/10.1080/14737175.2022.2030220
Sourbron, J., Klinkenberg, S., van Kuijk, S. M. J., et al. (2020). Ketogenic diet for the treatment of pediatric epilepsy: Review and meta-analysis. Child's Nervous System, 36(6), 1099–1109. https://doi.org/10.1007/s00381-020-04578-7
Włodarek, D. (2019). Role of ketogenic diets in neurodegenerative diseases (Alzheimer's disease and Parkinson's disease). Nutrients, 11(1), 169. https://doi.org/10.3390/nu11010169
Caminha, M. C., Moreira, A. B., Matheus, F. C., et al. (2022). Efficacy and tolerability of the ketogenic diet and its variations for preventing migraine in adolescents and adults: A systematic review. Nutrition Reviews, 80(6), 1634–1647. https://doi.org/10.1093/nutrit/nuab080
Maalouf, M., Rho, J. M., & Mattson, M. P. (2009). The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Research Reviews, 59(2), 293–315. https://doi.org/10.1016/j.brainresrev.2008.09.002
Mu, J., Wang, T., Li, M., et al. (2022). Ketogenic diet protects myelin and axons in diffuse axonal injury. Nutritional Neuroscience, 25(7), 1534–1547. https://doi.org/10.1080/1028415X.2021.1875300
Attaye, I., van Oppenraaij, S., Warmbrunn, M. V., & Nieuwdorp, M. (2021). The role of the gut microbiota on the beneficial effects of ketogenic diets. Nutrients, 14(1), 191. https://doi.org/10.3390/nu14010191
Neish, A. S. (2009). Microbes in gastrointestinal health and disease. Gastroenterology, 136(1), 65–80. https://doi.org/10.1053/j.gastro.2008.10.080
Qin, J., Li, R., Raes, J., et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285), 59–65. https://doi.org/10.1038/nature08821
Adak, A., & Khan, M. R. (2019). An insight into gut microbiota and its functionalities. Cellular and Molecular Life Sciences, 76(3), 473–493. https://doi.org/10.1007/s00018-018-2943-4
Magnúsdóttir, S., Ravcheev, D., de Crécy-Lagard, V., & Thiele, I. (2015). Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Frontiers in Genetics, 6, 148. https://doi.org/10.3389/fgene.2015.00148
Rooks, M. G., & Garrett, W. S. (2016). Gut microbiota, metabolites and host immunity. Nature Reviews Immunology, 16(6), 341–352. https://doi.org/10.1038/nri.2016.42
Lazar, V., Ditu, L. M., Pircalabioru, G. G., et al. (2018). Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Frontiers in Immunology, 9, 1830. https://doi.org/10.3389/fimmu.2018.01830
Vancamelbeke, M., & Vermeire, S. (2017). The intestinal barrier: A fundamental role in health and disease. Expert Review of Gastroenterology & Hepatology, 11(9), 821–834. https://doi.org/10.1080/17474124.2017.1343143
Carabotti, M., Scirocco, A., Maselli, M. A., & Severi, C. (2015). The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Annals of Gastroenterology, 28(2), 203–209.
Foster, J. A., Baker, G. B., & Dursun, S. M. (2021). The relationship between the gut microbiome–immune system–brain axis and major depressive disorder. Frontiers in Neurology, 12, 721126. https://doi.org/10.3389/fneur.2021.721126
Dinan, T. G., Borre, Y. E., & Cryan, J. F. (2014). Genomics of schizophrenia: Time to consider the gut microbiome? Molecular Psychiatry, 19(12), 1252–1257. https://doi.org/10.1038/mp.2014.93
Donoso, F., Cryan, J. F., Olavarría-Ramírez, L., Nolan, Y. M., & Clarke, G. (2023). Inflammation, lifestyle factors, and the microbiome–gut–brain axis: Relevance to depression and antidepressant action. Clinical Pharmacology & Therapeutics, 113(2), 246–259. https://doi.org/10.1002/cpt.2581
Fukui, H. (2016). Increased intestinal permeability and decreased barrier function: Does it really influence the risk of inflammation? Inflammatory Intestinal Diseases, 1(3), 135–145. https://doi.org/10.1159/000447252
Horn, J., Mayer, D. E., Chen, S., & Mayer, E. A. (2022). Role of diet and its effects on the gut microbiome in the pathophysiology of mental disorders. Translational Psychiatry, 12, Article 164. https://doi.org/10.1038/s41398-022-01922-0
Jones, B. D. M., Daskalakis, Z. J., Carvalho, A. F., et al. (2020). Inflammation as a treatment target in mood disorders: Review. BJPsych Open, 6(4), e60. https://doi.org/10.1192/bjo.2020.43
Weiss, G. A., & Hennet, T. (2017). Mechanisms and consequences of intestinal dysbiosis. Cellular and Molecular Life Sciences, 74(16), 2959–2977. https://doi.org/10.1007/s00018-017-2509-x
Borrego-Ruiz, A., & Borrego, J. J. (2024). An updated overview on the relationship between human gut microbiome dysbiosis and psychiatric and psychological disorders. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 128, 110861. https://doi.org/10.1016/j.pnpbp.2023.110861
Views:
49
Downloads:
37
Copyright (c) 2025 Natalia Kraciuk, Alicja Bury, Karol Bartecki, Małgorzata Piekarska-Kasperska, Aleksandra Maciejczyk, Katarzyna Krupa, Julia Błoniecka, Kacper Jankowski, Anna Daniel

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.