ARCHITECTURAL DESIGN QUALITY BETWEEN BIM COLLABORATIVE LOGIC AND TRADITIONAL CAD LOGIC

Keywords: BIM, Architectural design, Collaborative process, CAD, Archiwizard©, Depthmap©, SPSS©.

Abstract

Building Information Modeling, often referred to as BIM, is considered an essential part of the design and construction process in many countries. The aim of this study is to test the application of this system in relation to traditional computer aide design (CAD) and to characterize the possible contribution of BIM to architectural quality. The analysis model consists of modeling the design process through an exercise proposed to student architects. The proposed solutions were subjected to a detailed statistical analysis in order to characterize the contribution of BIM elements to design quality. The results show that out of five evaluation criteria, four are in favor of BIM, with a percentage of 80%. For the functionality criteria, the results of the BIM approach and those of CAD are reconciled for the remaining 20%. This research confirms that architectural design using BIM tools, even with a low level of collaboration, leads to a higher quality design than the traditional CAD-based approach.

References

K. Bouguerra, L. Yaik-Wah, and K. N. Ali, “A Preliminary Implementation Framework of Building Information Modelling (BIM) in the Algerian AEC Industry,” Int. J. Built Environ. Sustain., vol. 7, no. 3, pp. 59–68, 2020, doi: 10.11113/ijbes.v7.n3.554.

J. Guéneau, “Le métier d’architecte et le BIM. Nouvelles répartitions des tâches et des responsabilités dans les métiers de la création,” Tech. Cult., no. September, 2019, doi: 10.4000/tc.10327.

E. Heffernan, M. Sohel, S. Beazley, and T. Mccarthy, “From BIM (Building Information Modelling) to BEM (Building Energy Modelling): A collaborative approach,” Australas. Build. Simul. 2017, pp. 1–11, 2017, [Online]. Available: http://ro.uow.edu.au/eispapers1/1049

X. Calixte, K. Cuffi, and P. Leclercq, “Mise en place d’un outil pédagogique de documentation du processus de conception architecturale,” SHS Web Conf., vol. 147, p. 03002, 2022, doi: 10.1051/shsconf/202214703002.

L. Ziwen and L. Yujie, “A Review and Scientometric Analysis of Global Building Information A review and scientometric analysis of global Building Information Modelling ( BIM ) research in the Architecture , Engineering and Construction ( AEC ) industry,” preprints201907.0026., vol. v1, no. February 2020, 2019, doi: 10.20944/preprints201907.0026.v1.

A. Andriamamonjy, D. Saelens, and R. Klein, “A combined scientometric and conventional literature review to grasp the entire BIM knowledge and its integration with energy simulation,” Journal of Building Engineering, vol. 22, no. Decembre 2019. Elsevier Ltd, pp. 513–527, 2019. doi: 10.1016/j.jobe.2018.12.021.

R. Miettinen and S. Paavola, “Beyond the BIM utopia: Approaches to the development and implementation of building information modeling,” Autom. Constr., vol. 43, pp. 84–91, 2014, doi: 10.1016/j.autcon.2014.03.009.

J. Basbagill, F. Flager, M. Lepech, and M. Fischer, “Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts,” Build. Environ., vol. 60, pp. 81–92, 2013, doi: 10.1016/j.buildenv.2012.11.009.

C. Kim, C. Kim, and H. Son, “Automated construction progress measurement using a 4D building information model and 3D data,” Autom. Constr., vol. 31, pp. 75–82, 2013, doi: 10.1016/j.autcon.2012.11.041.

R. Sacks, I. Kaner, C. M. Eastman, and Y. S. Jeong, “The Rosewood experiment - Building information modeling and interoperability for architectural precast facades,” Autom. Constr., vol. 19, no. 4, pp. 419–432, 2010, doi: 10.1016/j.autcon.2009.11.012.

B. Welle, J. Haymaker, and Z. Rogers, “ThermalOpt: A methodology for automated BIM-based multidisciplinary thermal simulation for use in optimization environments,” Build. Simul., vol. 4, no. 4, pp. 293–313, 2011, doi: 10.1007/s12273-011-0052-5.

S. Tan, G. G. Ayalp, M. Z. Tel, M. Serter, and Y. B. Metinal, “Modeling the Critical Success Factors for BIM Implementation in Developing Countries : Sampling the Turkish AEC Industry,” sustainability, vol. 14, no. 9537, pp. 1–28, 2022, [Online]. Available: https://doi.org/10.3390/su14159537

A. B. Saka and D. W. M. Chan, “Profound barriers to building information modelling (BIM) adoption in construction small and medium-sized enterprises (SMEs),” Constr. Innov., vol. 20, no. 2, pp. 261–284, Jan. 2020, doi: 10.1108/CI-09-2019-0087.

J. A. J. Solomon Olusola Babatunde, Damilola Ekundayo,Olubola Babalola, “Analysis of the drivers and benefits of BIM incorporation into quantity surveying profession: Academia and students’ perspectives,” J. Eng. Des. Technol., vol. 16, no. 5, pp. 750–766, 2018.

K. A. Awwad, A. Shibani, and M. Ghostin, “Exploring the critical success factors influencing BIM level 2 implementation in the UK construction industry: the case of SMEs,” Int. J. Constr. Manag., vol. 22, no. 10, pp. 1894–1901, Jul. 2022, doi: 10.1080/15623599.2020.1744213.

Z. Liu, Y. Lu, T. Nath, Q. Wang, R. L. K. Tiong, and L. L. C. Peh, “Critical success factors for BIM adoption during construction phase: a Singapore case study,” Eng. Constr. Archit. Manag., vol. 29, no. 9, pp. 3267–3287, Jan. 2022, doi: 10.1108/ECAM-12-2020-1072.

A. C. V. de Carvalho, A. D. Granja, and V. G. da Silva, “A systematic literature review on integrative lean and sustainability synergies over a building’s lifecycle,” Sustain., vol. 9, no. 7, 2017, doi: 10.3390/su9071156.

R. Santos, A. Aguiar, J. D. Silvestre, and L. Pyl, “Automation in Construction Informetric analysis and review of literature on the role of BIM in sustainable construction,” Autom. Constr., vol. 103, no. February, pp. 221–234, 2019, doi: 10.1016/j.autcon.2019.02.022.

V. Pereira, J. Santos, F. Leite, and P. Escórcio, “Using BIM to improve building energy efficiency – A scientometric and systematic review,” Energy Build., vol. 250, 2021, doi: 10.1016/j.enbuild.2021.111292.

S. Abdullahi and D. W. M. Chan, “A Scientometric Review and Metasynthesis of Building Information Modelling (BIM) Research in Africa,” buildings, 2019.

A. B. Saka and D. W. M. Chan, “A global taxonomic review and analysis of the development of BIM research between 2006 and 2017,” Constr. Innov., vol. 19, no. 3, pp. 465–490, 2019, doi: 10.1108/CI-12-2018-0097.

A. Laroui, “La qualité architecturale des bâtiments publics à Ghardaïa (Cas d’étude bâtiment du siège de l’office de promotion et de gestion immobilière –OPGI -),” Mohamed Khider – Biskra, 2017.

M. Chaabi, “La collaboration entre architectes et ingénieurs en conception architecturale , rôle des technologies de l ’ information et de la communication .,” Ferhat Abbes –Sétif 1, 2017.

O. Saighi and M. S. Zerouala, “The Use of Computer Tools in the Design Process of Students’ Architectural Projects. Case Studies in Algeria,” IOP Conf. Ser. Mater. Sci. Eng., vol. 291, no. 1, pp. 0–8, 2018, doi: 10.1088/1757-899X/291/1/012007.

T. Harputlugil, A. T. Gültekin, M. Prins, and Y. I. Topçu, “Architectural design quality assessment based on analytic hierarchy process: A case study (1),” Metu J. Fac. Archit., vol. 31, no. 2, pp. 139–161, 2014, doi: 10.4305/METU.JFA.2014.2.8.

A. Suratkon and S. Jusoh, “Indicators To Measure Design Quality of Buildings,” First Int. Conf. Sci. Eng. Environ., pp. 365–370, 2015, [Online]. Available: http://eprints.uthm.edu.my/7495/1/INDICATORS_TO_MEASURE_DESIGN_QUALITY_OF_BUILDINGS.pdf

L. Chen and W. Pan, “A BIM-integrated Fuzzy Multi-criteria Decision Making Model for Selecting Low-Carbon Building Measures,” Procedia Eng., vol. 118, pp. 606–613, 2015, doi: 10.1016/j.proeng.2015.08.490.

B. Giel and R. R. A. Issa, “Framework for Evaluating the BIM Competencies of Facility Owners,” J. Manag. Eng., vol. 32, no. 1, 2016, doi: 10.1061/(asce)me.1943-5479.0000378.

Ş. Eryürük, F. Kürüm Varolgüneş, and S. Varolgüneş, “Assessment of stakeholder satisfaction as additive to improve building design quality: AHP-based approach,” J. Hous. Built Environ., vol. 37, no. 1, pp. 505–528, 2022, doi: 10.1007/s10901-021-09855-8.

T. Das, “Architectural Design Quality Indicators for Educational Built Environment in the Indian Context,” Int. J. Appl. Eng. Res., vol. 17, no. 1, p. 66, 2022, doi: 10.37622/ijaer/17.1.2022.66-73.

J. Choi and K. Inhan, “Development of Check-list for BIM Based Architectural Design Quality Check,” 한국 Cad/Cam 학회 논문집, vol. 18, no. 3, pp. 177–188, 2013.

C. Tian, X. Liu, Y. Yang, and G. Zhu, “Evaluation and Analysis of Quantitative Architectural Space Index Based on Analytic Hierarchy Process,” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/4911589.

T. Reeves, S. Olbina, and R. R. A. Issa, “Guidelines for using building information modeling for energy analysis of buildings,” Buildings, vol. 5, no. 4, pp. 1361–1388, 2015, doi: 10.3390/buildings5041361.

M. H. Ebrahimi, P. Devillers, M. H. Ebrahimi, P. Devillers, and E. G. Optimization, “Optimization of the thermal performance of compressed earth block wall for affordable housing,” in 4e conférence internationale francophone Nouveaux Matériaux et Durabilité, Montpellier,France, 2022.

A. Turner, E. Friedrich, T. Varoudis, C. Sailer, and P. Koutsolampros, “depthmapX: visual and spatial network analysis software,” UCL 2023, 2023. https://www.ucl.ac.uk/bartlett/architecture/research/space-syntax/depthmapx (accessed Mar. 23, 2023).

Y. S. Hegazi, D. Tahoon, N. A. Abdel-Fattah, and M. F. El-Alfi, “Socio-spatial vulnerability assessment of heritage buildings through using space syntax,” Heliyon, vol. 8, no. 3, 2022, doi: 10.1016/j.heliyon.2022.e09133.

D. Laouar and S. Mazouz, “d ’ Annaba The axial map as an analysis ’ tool for the spatial accessibility : Case of Annaba City La carte axiale , un outil d ’analyse de l ’accessibilité spatiale : cas de la ville d ’ Annaba The axial map as an analysis ’ tool for the spatial acces,” no. January 2019, 2017.

Views:

97

Downloads:

36

Published
2024-05-20
Citations
How to Cite
Khalid Zaouia, & Said Mazouz. (2024). ARCHITECTURAL DESIGN QUALITY BETWEEN BIM COLLABORATIVE LOGIC AND TRADITIONAL CAD LOGIC. International Journal of Innovative Technologies in Social Science, (2(42). https://doi.org/10.31435/rsglobal_ijitss/30062024/8138