THE IMPACT OF CAFFEINE ON SURGERY
Abstract
Caffeine is one of the most widely consumed psychoactive substances and is commonly used by both surgical patients and healthcare professionals. While its primary effect on the central nervous system is the reduction of fatigue and enhancement of alertness, caffeine also influences cardiovascular function, skeletal muscle activity, metabolism, and neuroendocrine regulation. Owing to these multifaceted actions, caffeine may affect perioperative outcomes and complications in both beneficial and adverse ways.
This narrative review summarizes current evidence on habitual and perioperative caffeine consumption in the surgical setting, addressing its interactions with anesthetic and analgesic drugs, effects on physiological recovery and wound healing, influence on perioperative risk, and potential impact on surgeons’ alertness and procedural precision.
The available studies are limited in number, heterogeneous in design, and frequently inconclusive, which precludes clear clinical recommendations regarding habitual or perioperative caffeine consumption. Further well-designed studies are required to clarify the benefits and risks of caffeine use for both patients and surgical staff and to support the development of evidence-based perioperative guidance.
References
Abbas-Hashemi, S. A., Hosseininasab, D., Rastgoo, S., Shiraseb, F., & Asbaghi, O. (2023). The effects of caffeine supplementation on blood pressure in adults: A systematic review and dose-response meta-analysis. Clinical Nutrition ESPEN, 58, 165–177. https://doi.org/10.1016/j.clnesp.2023.09.923
Aggarwal, R., Mishra, A., Crochet, P., Sirimanna, P., & Darzi, A. (2011). Effect of caffeine and taurine on simulated laparoscopy performed following sleep deprivation. British Journal of Surgery, 98(11), 1666–1672. https://doi.org/10.1002/bjs.7600
Alao, J. P., & Sunnerhagen, P. (2009). The ATM and ATR inhibitors CGK733 and caffeine suppress cyclin D1 levels and inhibit cell proliferation. Radiation Oncology, 4(1), 51. https://doi.org/10.1186/1748-717X-4-51
Asher, D. I., & Avery, E. G. (2018). The perioperative significance of systemic arterial diastolic hypertension in adults. Current Opinion in Anaesthesiology, 31(1), 67–74. https://doi.org/10.1097/ACO.0000000000000552
Barcelos, R. P., Lima, F. D., Carvalho, N. R., Bresciani, G., & Royes, L. F. (2020). Caffeine effects on systemic metabolism, oxidative-inflammatory pathways, and exercise performance. Nutrition Research, 80, 1–17. https://doi.org/10.1016/j.nutres.2020.05.005
Barcelos, R., Souza, M., Amaral, G., Stefanello, S., Bresciani, G., Fighera, M., Soares, F., & De Vargas Barbosa, N. (2014). Caffeine Intake May Modulate Inflammation Markers in Trained Rats. Nutrients, 6(4), 1678–1690. https://doi.org/10.3390/nu6041678
Basnet, R. M., Zizioli, D., Muscò, A., Finazzi, D., Sigala, S., Rossini, E., Tobia, C., Guerra, J., Presta, M., & Memo, M. (2021). Caffeine Inhibits Direct and Indirect Angiogenesis in Zebrafish Embryos. International Journal of Molecular Sciences, 22(9), 4856. https://doi.org/10.3390/ijms22094856
Beaven, C. M., Hopkins, W. G., Hansen, K. T., Wood, M. R., Cronin, J. B., & Lowe, T. E. (2008). Dose Effect of Caffeine on Testosterone and Cortisol Responses to Resistance Exercise. International Journal of Sport Nutrition and Exercise Metabolism, 18(2), 131–141. https://doi.org/10.1123/ijsnem.18.2.131
Belykh, E., Onaka, N. R., Abramov, I. T., Yağmurlu, K., Byvaltsev, V. A., Spetzler, R. F., Nakaj, P., & Preul, M. C. (2018). Systematic Review of Factors Influencing Surgical Performance: Practical Recommendations for Microsurgical Procedures in Neurosurgery. World Neurosurgery, 112, e182–e207. https://doi.org/10.1016/j.wneu.2018.01.005
Cole, E. L., Grillo, A. R., & Vrshek-Schallhorn, S. (2024). Habitual Caffeine Use Is Associated With Heightened Cortisol Reactivity to Lab-Based Stress in Two Samples. Psychosomatic Medicine, 86(8), 730–737. https://doi.org/10.1097/PSY.0000000000001334
Davoudi, M., Abdoli, F., Momeni, F., & Asgarabad, M. H. (2025). Network analysis of caffeine use disorder, withdrawal symptoms, and psychiatric symptoms. BMC Psychiatry, 25(1), 66. https://doi.org/10.1186/s12888-025-06478-z
Deljou, A., Sprung, J., Soleimani, J., Schroeder, D. R., & Weingarten, T. N. (2024). Caffeine administration to treat oversedation after general anesthesia: A retrospective analysis. Journal of Clinical Anesthesia, 92, 111321. https://doi.org/10.1016/j.jclinane.2023.111321
Derry, C. J., Derry, S., & Moore, R. A. (2014). Caffeine as an analgesic adjuvant for acute pain in adults. Cochrane Database of Systematic Reviews, 2019(5). https://doi.org/10.1002/14651858.CD009281.pub3
Ding, M., Bhupathiraju, S. N., Satija, A., Van Dam, R. M., & Hu, F. B. (2014). Long-Term Coffee Consumption and Risk of Cardiovascular Disease: A Systematic Review and a Dose–Response Meta-Analysis of Prospective Cohort Studies. Circulation, 129(6), 643–659. https://doi.org/10.1161/CIRCULATIONAHA.113.005925
Dumpa, V., Nielsen, L., Wang, H., & Kumar, V. H. S. (2019). Caffeine is associated with improved alveolarization and angiogenesis in male mice following hyperoxia induced lung injury. BMC Pulmonary Medicine, 19(1), 138. https://doi.org/10.1186/s12890-019-0903-x
Ebrecht, M., Hextall, J., Kirtley, L.-G., Taylor, A., Dyson, M., & Weinman, J. (2004). Perceived stress and cortisol levels predict speed of wound healing in healthy male adults. Psychoneuroendocrinology, 29(6), 798–809. https://doi.org/10.1016/S0306-4530(03)00144-6
Emami S, Panah A, Hakimi SS, & Sahmeddini MA. (2022). Effect of Caffeine on the Acceleration of Emergence from General Anesthesia with Inhalation Anesthetics in Children Undergoing Inguinal Herniorrhaphy: A Randomized Clinical Trial. Iran J Med Sci. 2022 Mar;47(2):107-113. https://doi.org/10.30476/IJMS.2021.87688.1818.
Fargen, K. M., Turner, R. D., & Spiotta, A. M. (2016). Factors That Affect Physiologic Tremor and Dexterity During Surgery: A Primer for Neurosurgeons. World Neurosurgery, 86, 384–389. https://doi.org/10.1016/j.wneu.2015.10.098
Farooq, Z., Malik, S., Bhat, M., & Farooq, S. (2025). Perioperative Cardiac Complications and Evidence-Based Strategies for Their Management. Cureus. https://doi.org/10.7759/cureus.95276
Fong, R., Khokhar, S., Chowdhury, A. N., Xie, K. G., Wong, J. H.-Y., Fox, A. P., & Xie, Z. (2017). Caffeine accelerates recovery from general anesthesia via multiple pathways. Journal of Neurophysiology, 118(3), 1591–1597. https://doi.org/10.1152/jn.00393.2017
Fox, A. P., Wagner, K. R., Towle, V. L., Xie, K. G., & Xie, Z. (2020). Caffeine reverses the unconsciousness produced by light anesthesia in the continued presence of isoflurane in rats. PLOS ONE, 15(11), e0241818. https://doi.org/10.1371/journal.pone.0241818
Fuchs, F. D., & Whelton, P. K. (2020). High Blood Pressure and Cardiovascular Disease. Hypertension, 75(2), 285–292. https://doi.org/10.1161/HYPERTENSIONAHA.119.14240
Gardeazabal, L., & Izeta, A. (2024). Elastin and collagen fibres in cutaneous wound healing. Experimental Dermatology, 33(3), e15052. https://doi.org/10.1111/exd.15052
Gardiner, C., Weakley, J., Burke, L. M., Roach, G. D., Sargent, C., Maniar, N., Townshend, A., & Halson, S. L. (2023). The effect of caffeine on subsequent sleep: A systematic review and meta-analysis. Sleep Medicine Reviews, 69, 101764. https://doi.org/10.1016/j.smrv.2023.101764
Gavrieli, A., Yannakoulia, M., Fragopoulou, E., Margaritopoulos, D., Chamberland, J. P., Kaisari, P., Kavouras, S. A., & Mantzoros, C. S. (2011). Caffeinated Coffee Does Not Acutely Affect Energy Intake, Appetite, or Inflammation but Prevents Serum Cortisol Concentrations from Falling in Healthy Men1–4. The Journal of Nutrition, 141(4), 703–707. https://doi.org/10.3945/jn.110.137323
Gerdes, C., Berghäuser, A. M., Hipp, J., Bäumlein, M., Hinrichs, S., Thomassen, J.-C., Hoffmann, S., & Gerdes, B. (2022). Coffee break has no impact on laparoscopic skills: A randomized double-blinded placebo-controlled parallel-group trial. Surgical Endoscopy, 36(5), 3533–3541. https://doi.org/10.1007/s00464-021-08675-9
Guest, N. S., VanDusseldorp, T. A., Nelson, M. T., Grgic, J., Schoenfeld, B. J., Jenkins, N. D. M., Arent, S. M., Antonio, J., Stout, J. R., Trexler, E. T., Smith-Ryan, A. E., Goldstein, E. R., Kalman, D. S., & Campbell, B. I. (2021). International society of sports nutrition position stand: Caffeine and exercise performance. Journal of the International Society of Sports Nutrition, 18(1), 1. https://doi.org/10.1186/s12970-020-00383-4
Gür, M., Çınar, V., Akbulut, T., Bozbay, K., Yücedal, P., Aslan, M., Avcu, G., Padulo, J., Russo, L., Rog, J., & Migliaccio, G. M. (2024). Determining the Levels of Cortisol, Testosterone, Lactic Acid and Anaerobic Performance in Athletes Using Various Forms of Coffee. Nutrients, 16(19), 3228. https://doi.org/10.3390/nu16193228
Han, J., Liu, C., Yang, H., Dong, Z., Li, X., Gao, R., Li, J., Zhang, Q., Ming, W., Li, Z., Li, J., & Qi, X. (2025). Caffeine intake associated with a lower risk of liver fibrosis in different glucose status. Journal of Advanced Research, 78, 453–460. https://doi.org/10.1016/j.jare.2025.02.004
Hillman, D. R. (2021). Sleep Loss in the Hospitalized Patient and Its Influence on Recovery From Illness and Operation. Anesthesia & Analgesia, 132(5), 1314–1320. https://doi.org/10.1213/ANE.0000000000005323
Jiang, D., Guo, R., Machens, H.-G., & Rinkevich, Y. (2023). Diversity of Fibroblasts and Their Roles in Wound Healing. Cold Spring Harbor Perspectives in Biology, 15(3), a041222. https://doi.org/10.1101/cshperspect.a041222
Jozic, I., Vukelic, S., Stojadinovic, O., Liang, L., Ramirez, H. A., Pastar, I., & Tomic Canic, M. (2017). Stress Signals, Mediated by Membranous Glucocorticoid Receptor, Activate PLC/PKC/GSK-3β/β-catenin Pathway to Inhibit Wound Closure. Journal of Investigative Dermatology, 137(5), 1144–1154. https://doi.org/10.1016/j.jid.2016.11.036
Kolahdouzan, M., & Hamadeh, M. J. (2017). The neuroprotective effects of caffeine in neurodegenerative diseases. CNS Neuroscience & Therapeutics, 23(4), 272–290. https://doi.org/10.1111/cns.12684
Le, D. T., Dadam, M. N., Shaaban, E., Thang, D. X., Khaydarov, M., Tran, P., Huy, N. T., & Long, T. C. D. (2025). A well-rested scalpel: A proposal for standardized guidelines on surgeon fatigue. Frontiers in Health Services, 5, 1713346. https://doi.org/10.3389/frhs.2025.1713346
Levi-Schaffer, F., & Touitou, E. (1991). Xanthines Inhibit 3T3 Fibroblast Proliferation. Skin Pharmacology and Physiology, 4(4), 286–290. https://doi.org/10.1159/000210963
Li, H., Jin, S.-Y., Son, H.-J., Seo, J. H., & Jeong, G.-B. (2013). Caffeine-induced endothelial cell death and the inhibition of angiogenesis. Anatomy & Cell Biology, 46(1), 57. https://doi.org/10.5115/acb.2013.46.1.57
Li, Y.-F., Ouyang, S.-H., Tu, L.-F., Wang, X., Yuan, W.-L., Wang, G.-E., Wu, Y.-P., Duan, W.-J., Yu, H.-M., Fang, Z.-Z., Kurihara, H., Zhang, Y., & He, R.-R. (2018). Caffeine Protects Skin from Oxidative Stress-Induced Senescence through the Activation of Autophagy. Theranostics, 8(20), 5713–5730. https://doi.org/10.7150/thno.28778
Lovallo, W. R., Farag, N. H., Vincent, A. S., Thomas, T. L., & Wilson, M. F. (2006). Cortisol responses to mental stress, exercise, and meals following caffeine intake in men and women. Pharmacology Biochemistry and Behavior, 83(3), 441–447. https://doi.org/10.1016/j.pbb.2006.03.005
Lovallo, W. R., Whitsett, T. L., al’Absi, M., Sung, B. H., Vincent, A. S., & Wilson, M. F. (2005). Caffeine Stimulation of Cortisol Secretion Across the Waking Hours in Relation to Caffeine Intake Levels. Psychosomatic Medicine, 67(5), 734–739. https://doi.org/10.1097/01.psy.0000181270.20036.06
Malviya, A. K., Saranlal, A. M., Mulchandani, M., & Gupta, A. (2023). Caffeine – Essentials for anaesthesiologists: A narrative review. Journal of Anaesthesiology Clinical Pharmacology, 39(4), 528–538. https://doi.org/10.4103/joacp.joacp_285_22
Merighi, S., Benini, A., Mirandola, P., Gessi, S., Varani, K., Simioni, C., Leung, E., Maclennan, S., Baraldi, P. G., & Borea, P. A. (2007). Caffeine Inhibits Adenosine-Induced Accumulation of Hypoxia-Inducible Factor-1α, Vascular Endothelial Growth Factor, and Interleukin-8 Expression in Hypoxic Human Colon Cancer Cells. Molecular Pharmacology, 72(2), 395–406. https://doi.org/10.1124/mol.106.032920
Mesas, A. E., Leon-Muñoz, L. M., Rodriguez-Artalejo, F., & Lopez-Garcia, E. (2011). The effect of coffee on blood pressure and cardiovascular disease in hypertensive individuals: A systematic review and meta-analysis. The American Journal of Clinical Nutrition, 94(4), 1113–1126. https://doi.org/10.3945/ajcn.111.016667
Nilnumkhum, A., Kanlaya, R., Yoodee, S., & Thongboonkerd, V. (2019). Caffeine inhibits hypoxia-induced renal fibroblast activation by antioxidant mechanism. Cell Adhesion & Migration, 13(1), 259–271. https://doi.org/10.1080/19336918.2019.1638691
O’Connor, S. Aj., Maese, S. J., & Vizcaychipi, M. P. (2023). High daily caffeine intake is associated with lower propofol requirements for anesthetic induction. Journal of Anaesthesiology Clinical Pharmacology, 39(2), 302–308. https://doi.org/10.4103/joacp.joacp_478_21
Ojeh, N., Stojadinovic, O., Pastar, I., Sawaya, A., Yin, N., & Tomic‐Canic, M. (2016). The effects of caffeine on wound healing. International Wound Journal, 13(5), 605–613. https://doi.org/10.1111/iwj.12327
Ősz, B.-E., Jîtcă, G., Ștefănescu, R.-E., Pușcaș, A., Tero-Vescan, A., & Vari, C.-E. (2022). Caffeine and Its Antioxidant Properties—It Is All about Dose and Source. International Journal of Molecular Sciences, 23(21), 13074. https://doi.org/10.3390/ijms232113074
Parry, D., Iqbal, S., Harrap, I., Oeppen, R., & Brennan, Pa. (2023). Caffeine: Benefits and drawbacks for technical performance. British Journal of Oral and Maxillofacial Surgery, 61(3), 198–201. https://doi.org/10.1016/j.bjoms.2023.01.007
Pierpont, Y. N., Dinh, T. P., Salas, R. E., Johnson, E. L., Wright, T. G., Robson, M. C., & Payne, W. G. (2014). Obesity and Surgical Wound Healing: A Current Review. ISRN Obesity, 2014, 1–13. https://doi.org/10.1155/2014/638936
Pleticha, J., Niesen, A. D., Kopp, S. L., & Johnson, R. L. (2021). Caffeine supplementation as part of enhanced recovery after surgery pathways: A narrative review of the evidence and knowledge gaps. Canadian Journal of Anesthesia/Journal Canadien d’anesthésie, 68(6), 876–879. https://doi.org/10.1007/s12630-021-01943-1
Przylipiak, A., Donejko, M., Rysiak, E., Gluszuk, K., & Surażyński, A. (2014). Influence of caffeine and hyaluronic acid on collagen biosynthesis in human skin fibroblasts. Drug Design, Development and Therapy, 1923. https://doi.org/10.2147/DDDT.S69791
Reichert, C. F., Deboer, T., & Landolt, H. (2022). Adenosine, caffeine, and sleep–wake regulation: State of the science and perspectives. Journal of Sleep Research, 31(4), e13597. https://doi.org/10.1111/jsr.13597
Ruggiero, M., Calvello, R., Porro, C., Messina, G., Cianciulli, A., & Panaro, M. A. (2022). Neurodegenerative Diseases: Can Caffeine Be a Powerful Ally to Weaken Neuroinflammation? International Journal of Molecular Sciences, 23(21), 12958. https://doi.org/10.3390/ijms232112958
Saito, T., Tazawa, K., Yokoyama, Y., & Saito, M. (1997). Surgical stress inhibits the growth of fibroblasts through the elevation of plasma catecholamine and cortisol concentrations. Surgery Today, 27(7), 627–631. https://doi.org/10.1007/BF02388219
Samieirad, S., Mianbandi, V., Salari Sedigh, H., Hosseini-Abrishami, M., Shiezadeh, F., Bagheri, H., Tohidi, E., & Saghravanian, N. (2020). Is Impregnation of Xenograft with Caffeine Effective on Bone Healing Rate in Mandibular Defects? A Pilot Histological Animal Study. Journal of Maxillofacial and Oral Surgery, 19(1), 85–92. https://doi.org/10.1007/s12663-019-01221-0
Sanders, R. D., Hughes, F., Shaw, A., Thompson, A., Bader, A., Hoeft, A., Williams, D. A., Grocott, M. P. W., Mythen, M. G., Miller, T. E., Edwards, M. R., Miller, T. E., Mythen, M. G., Grocott, M. Pw., Edwards, M. R., Ackland, G. L., Brudney, C. S., Cecconi, M., Ince, C., … Hamilton, M. (2019). Perioperative Quality Initiative consensus statement on preoperative blood pressure, risk and outcomes for elective surgery. British Journal of Anaesthesia, 122(5), 552–562. https://doi.org/10.1016/j.bja.2019.01.018
Scott, J. R., Hassett, A., Brummett, C., Harris, R., Clauw, D., & Harte, S. (2017). Caffeine as an opioid analgesic adjuvant in fibromyalgia. Journal of Pain Research, Volume 10, 1801–1809. https://doi.org/10.2147/JPR.S134421
Simsek, T., Uzelli Simsek, H., & Canturk, N. Z. (2014). Response to trauma and metabolic changes: Posttraumatic metabolism. Turkish Journal of Surgery, 30(3), 153–159. https://doi.org/10.5152/UCD.2014.2653
Sipilä, R. M., & Kalso, E. A. (2021). Sleep Well and Recover Faster with Less Pain—A Narrative Review on Sleep in the Perioperative Period. Journal of Clinical Medicine, 10(9), 2000. https://doi.org/10.3390/jcm10092000
Supit, T., Susilaningsih, N., Prasetyo, A., & Najatullah. (2021). Effects of Caffeine Consumption on Autologous Full-Thickness Skin Graft Healing in an Animal Model. Indian Journal of Plastic Surgery, 54(03), 314–320. https://doi.org/10.1055/s-0041-1734573
Tabrizi, R., Saneei, P., Lankarani, K. B., Akbari, M., Kolahdooz, F., Esmaillzadeh, A., Nadi-Ravandi, S., Mazoochi, M., & Asemi, Z. (2019). The effects of caffeine intake on weight loss: A systematic review and dos-response meta-analysis of randomized controlled trials. Critical Reviews in Food Science and Nutrition, 59(16), 2688–2696. https://doi.org/10.1080/10408398.2018.1507996
Thelwall, S., Harrington, P., Sheridan, E., & Lamagni, T. (2015). Impact of obesity on the risk of wound infection following surgery: Results from a nationwide prospective multicentre cohort study in England. Clinical Microbiology and Infection, 21(11), 1008.e1-1008.e8. https://doi.org/10.1016/j.cmi.2015.07.003
Turnbull, D., Rodricks, J. V., Mariano, G. F., & Chowdhury, F. (2017). Caffeine and cardiovascular health. Regulatory Toxicology and Pharmacology, 89, 165–185. https://doi.org/10.1016/j.yrtph.2017.07.025
Van Dam, R. M., Hu, F. B., & Willett, W. C. (2020). Coffee, Caffeine, and Health. New England Journal of Medicine, 383(4), 369–378. https://doi.org/10.1056/NEJMra1816604
Wang, A. S., Armstrong, E. J., & Armstrong, A. W. (2013). Corticosteroids and wound healing: Clinical considerations in the perioperative period. The American Journal of Surgery, 206(3), 410–417. https://doi.org/10.1016/j.amjsurg.2012.11.018
Wang, L., He, P., Li, A., Cao, K., Yan, J., Guo, S., Jiang, L., Yao, L., Dai, X., Feng, D., Xu, Y., & Tan, N. (2021). Caffeine promotes angiogenesis through modulating endothelial mitochondrial dynamics. Acta Pharmacologica Sinica, 42(12), 2033–2045. https://doi.org/10.1038/s41401-021-00623-6
Wang, M., Guo, W., & Chen, J.-F. (2025). Caffeine: A potential mechanism for anti-obesity. Purinergic Signalling, 21(4), 893–909. https://doi.org/10.1007/s11302-024-10022-1
Wang, P.-H., Huang, B.-S., Horng, H.-C., Yeh, C.-C., & Chen, Y.-J. (2018). Wound healing. Journal of the Chinese Medical Association, 81(2), 94–101. https://doi.org/10.1016/j.jcma.2017.11.002
Wang, Q., Fong, R., Mason, P., Fox, A. P., & Xie, Z. (2014). Caffeine accelerates recovery from general anesthesia. Journal of Neurophysiology, 111(6), 1331–1340. https://doi.org/10.1152/jn.00792.2013
Warner, N. S., Warner, M. A., Schroeder, D. R., Sprung, J., & Weingarten, T. N. (2018). Effects of caffeine administration on sedation and respiratory parameters in patients recovering from anesthesia. Biomolecules and Biomedicine, 18(1), 101–104. https://doi.org/10.17305/bjbms.2018.2434
Weibel, J., Lin, Y.-S., Landolt, H.-P., Garbazza, C., Kolodyazhniy, V., Kistler, J., Rehm, S., Rentsch, K., Borgwardt, S., Cajochen, C., & Reichert, C. F. (2020). Caffeine-dependent changes of sleep-wake regulation: Evidence for adaptation after repeated intake. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 99, 109851. https://doi.org/10.1016/j.pnpbp.2019.109851
Yeh, C.-H., Liao, Y.-F., Chang, C.-Y., Tsai, J.-N., Wang, Y.-H., Cheng, C.-C., Wen, C.-C., & Chen, Y.-H. (2012). Caffeine treatment disturbs the angiogenesis of zebrafish embryos. Drug and Chemical Toxicology, 35(4), 361–365. https://doi.org/10.3109/01480545.2011.627864
Copyright (c) 2026 Weronika Ewa Nowak, Paweł Harbut, Aleksander Białoń, Dominika Walczak, Adrian Kruk, Katarzyna Jakubowska, Aleksandra Dorosz, Igor Gawłowski, Aleksandra Miśta, Lidia Jurczenko

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

