THE ROLE OF THE MIRROR NEURON SYSTEM IN THE ACQUISITION OF EMERGENCY MEDICINE PROCEDURAL SKILLS: A COMPREHENSIVE NARRATIVE REVIEW
Abstract
Background: Emergency medicine requires precise and rapid execution of high‑risk procedures in time-sensitive environments, leaving limited opportunities for safe supervised practice. Neuroscientific discoveries, particularly related to the mirror neuron system (MNS), suggest that observational learning may effectively enhance motor skill acquisition without risk to patients.
Aim: To comprehensively review the neurobiological foundations, educational applications, and practical implications of the MNS in emergency medicine procedural training.
Material and methods: Narrative review including PubMed, Scopus, Web of Science. Literature (2000–2024) concerning neuroscience, medical education, motor learning, and emergency medicine was analyzed.
Results: Studies demonstrate that the MNS supports imitation, enhances procedural memory formation, and strengthens early motor skill acquisition. Educational strategies such as expert modeling, action observation, motor imagery, and multimodal simulation appear aligned with MNS activation and may optimize procedural training.
Conclusions: The MNS offers a valuable, underutilized framework for optimizing procedural training in emergency medicine. Future research should integrate neurophysiological tools into educational research to directly examine the mechanisms by which observational learning enhances clinical performance.
References
Arora, S., Sevdalis, N., Nestel, D., Woloshynowych, M., Darzi, A., & Kneebone, R. (2011). The impact of stress on surgical performance: A systematic review of the literature. Surgery, 147(3), 318–330. https://doi.org/10.1016/j.surg.2009.10.007
Badillo, G., & Rogalsky, C. (2017). Neuroimaging evidence for a shared neural substrate for action production and observation. Journal of Cognitive Neuroscience, 29(2), 251–268. https://doi.org/10.1162/jocn_a_01042
Baker, J. M., Rorden, C., & Fridriksson, J. (2010). Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke, 41(6), 1229–1236. https://doi.org/10.1161/STROKEAHA.109.576785
Battaglia, F., Lisanby, S. H., et al. (2009). Cortical excitability during action observation. Biological Psychiatry, 66(6), 495–502. https://doi.org/10.1016/j.biopsych.2009.04.034
Bellemare, C., Hart, D., et al. (2018). Video-based coaching for procedural skill acquisition in medicine: A meta-analysis. Medical Education, 52(4), 402–415. https://doi.org/10.1111/medu.13492
Brunner, I. C., Skouen, J. S., & Strand, L. I. (2015). Action observation as a method to enhance motor learning: A systematic review. Journal of Rehabilitation Medicine, 47(1), 1–9. https://doi.org/10.2340/16501977-1925
Buccino, G. (2014). Action observation treatment: A novel tool in neurorehabilitation. Philosophical Transactions of the Royal Society B, 369(1644), 20130185. https://doi.org/10.1098/rstb.2013.0185
Calvo-Mercado, J., Brunamonti, E., et al. (2020). Motor resonance during action observation: A TMS study. Neuropsychologia, 146, 107567. https://doi.org/10.1016/j.neuropsychologia.2020.107567
Catmur, C., Mars, R. B., Rushworth, M. F., & Heyes, C. (2012). Making mirrors: Motor learning and the mirror neuron system. Philosophical Transactions of the Royal Society B, 367(1585), 2239–2250. https://doi.org/10.1098/rstb.2012.0105
Chandrasekaran, S., et al. (2022). Emergency medicine trainees’ procedural performance after structured video-based pre-training. Western Journal of Emergency Medicine, 23(6), 931–938. https://doi.org/10.5811/westjem.2022.5.55671
Cook, D. A., Hatala, R., Brydges, R., et al. (2011). Technology-enhanced simulation for health professions education: A systematic review and meta-analysis. JAMA, 306(9), 978–988. https://doi.org/10.1001/jama.2011.1234
Cunnington, R., & Vogt, S. (2013). Action observation and motor learning. In S. Levin & D. Levison (Eds.), The Oxford handbook of human action (pp. 1–20). Oxford University Press.
di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91(1), 176–180. https://doi.org/10.1007/BF00230027
Eaves, D. L., Riach, M., Holmes, P. S., & Wright, D. J. (2020). Motor imagery during action observation enhances corticospinal excitability: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 113, 361–377. https://doi.org/10.1016/j.neubiorev.2020.03.012
Escardo-Paton, J., et al. (2016). Effects of action observation perspectives on motor learning. Experimental Brain Research, 234(10), 2967–2979. https://doi.org/10.1007/s00221-016-4691-z
Fadiga, L., Fogassi, L., Pavesi, G., & Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology, 73(6), 2608–2611. https://doi.org/10.1152/jn.1995.73.6.2608
Fitts, P. M., & Posner, M. I. (1967). Human performance. Brooks/Cole.
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(2), 593–609. https://doi.org/10.1093/brain/119.2.593
Gibson, J. J. (1979). The ecological approach to visual perception. Houghton Mifflin.
Hardwick, R. M., Caspers, S., Eickhoff, S. B., & Swinnen, S. P. (2018). Neural correlates of action: A quantitative meta-analysis of action observation and motor imagery. Cerebral Cortex, 28(10), 3450–3469. https://doi.org/10.1093/cercor/bhx214
Iacoboni, M., Woods, R. P., Brass, M., et al. (1999). Cortical mechanisms of human imitation. Science, 286(5449), 2526–2528. https://doi.org/10.1126/science.286.5449.2526
Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism for motor cognition. NeuroImage, 14(1), S103–S109. https://doi.org/10.1006/nimg.2001.0832
Jung, J., Yu, J., & Kang, H. (2020). Combined action observation and motor imagery training improves motor function and daily activities in stroke patients. Clinical Rehabilitation, 34(3), 304–312. https://doi.org/10.1177/0269215519891078
Kaplan, J. T., & Iacoboni, M. (2007). Multimodal action representation in human inferior frontal gyrus. Cognitive Processes, 8(2), 103–113. https://doi.org/10.1007/s10339-007-0163-2
Kilner, J. M., Paulignan, Y., & Blakemore, S. J. (2003). An interference effect of observed biological movement on action. Current Biology, 13(6), 522–525. https://doi.org/10.1016/S0960-9822(03)00165-9
Labruna, L., Fernández-Del-Olmo, M., et al. (2012). Modulation of motor cortex excitability by motor imagery and action observation. Neuroscience, 246, 93–101. https://doi.org/10.1016/j.neuroscience.2012.08.032
McBride, B., Wood, S. J., et al. (2021). First-person video modelling enhances learning of complex procedural tasks in novice learners. Medical Education, 55(3), 363–375. https://doi.org/10.1111/medu.14422
Molenberghs, P., Cunnington, R., & Mattingley, J. B. (2012). Brain regions with mirror properties: A meta-analysis. Cognitive Neuroscience, 3(3–4), 202–213. https://doi.org/10.1080/17588928.2012.704837
Mulder, T. (2007). Motor imagery and action observation: Cognitive tools for rehabilitation. Journal of Neural Transmission, 114(10), 1265–1278. https://doi.org/10.1007/s00702-007-0763-z
Naeem, Z., Saleh, Z., et al. (2014). Temporal dynamics of corticospinal excitability during action observation: A TMS study. Brain Stimulation, 7(3), 422–429. https://doi.org/10.1016/j.brs.2014.01.003
Paulus, M., & Moore, C. (2011). The development of imitation in childhood. Mind & Language, 26(3), 235–256. https://doi.org/10.1111/j.1468-0017.2011.01416.x
Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11(4), 264–274. https://doi.org/10.1038/nrn2805
Rosenthal, R., Skillman, J., et al. (2017). Simulation-based mastery learning improves central line insertion performance. Critical Care Medicine, 45(7), e640–e647. https://doi.org/10.1097/CCM.0000000000002367
Rossi, S., Hallett, M., Rossini, P. M., & Pascual-Leone, A. (2009). Safety and guidelines for TMS. Clinical Neurophysiology, 120(12), 2008–2039. https://doi.org/10.1016/j.clinph.2009.08.016
Sale, M. V., & Mattingley, J. B. (2013). Motor learning and the mirror system. Current Biology, 23(21), R956–R960. https://doi.org/10.1016/j.cub.2013.08.054
Schuster, C., Hilfiker, R., Amft, O., Scheidhauer, A., Andrews, B., Butler, J., Kischka, U., & Ettlin, T. (2011). Best practice for motor imagery: A systematic review. Archives of Physical Medicine and Rehabilitation, 92(11), 1880–1888. https://doi.org/10.1016/j.apmr.2011.03.026
Stefan, K., Classen, J., et al. (2005). Motor training and formation of cortical representations. Neuron, 45(3), 291–302. https://doi.org/10.1016/j.neuron.2004.12.007
Vogt, S., Di Rienzo, F., Collet, C., Collins, A., & Guillot, A. (2013). Multiple roles of motor imagery during action observation. Frontiers in Human Neuroscience, 7, 807. https://doi.org/10.3389/fnhum.2013.00807
Wayne, D. B., Butter, J., Siddall, V. J., et al. (2008). Simulation-based training improves resident performance in invasive procedures. Academic Medicine, 83(3), 265–272. https://doi.org/10.1097/ACM.0b013e318163f67c
Wright, D. J., McCormick, S. A., Williams, J., & Holmes, P. S. (2014). Motor imagery enhances corticospinal responses during action observation. BioMed Research International, 2014, 1–8. https://doi.org/10.1155/2014/938620
Zhang, Q., Sun, L., et al. (2021). Effects of guided motor imagery on procedural learning in healthcare trainees. BMJ Simulation & Technology Enhanced Learning, 7(6), 537–543. https://doi.org/10.1136/bmjstel-2020-000732
Copyright (c) 2025 Kateryna Shtohryn, Szymon Rudawski, Magdalena Zięba, Magdalena Morytko, Maja Elertowicz, Mikołaj Moskwa, Patrycja Herod, Aleksandra Wójciak

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

