THE GUT-BRAIN AXIS IN NEURODEGENERATIVE DISEASES AND MOOD DISORDERS: MECHANISMS AND SCIENTIFIC EVIDENCE
Abstract
The gut–brain axis (GBA) is a complex, bidirectional communication system between the central and enteric nervous systems and the gut microbiota. Increasing evidence points to its key role in the pathogenesis of neurodegenerative diseases and mood disorders, such as Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, depression, and anxiety disorders.
Communication within the GBA occurs through neural, immune, and endocrine pathways, with microbial metabolites-including short-chain fatty acids, tryptophan derivatives, and cytokines-playing a crucial role in neuroinflammatory and neurodegenerative processes. Gut dysbiosis, increased intestinal barrier permeability, and vagus nerve dysfunction link intestinal abnormalities with brain dysfunction.
Preclinical and clinical studies suggest that modulation of the microbiota-through diet, probiotics, prebiotics, or fecal microbiota transplantation-may have therapeutic potential in neuropsychiatric and neurodegenerative diseases. However, individual variability, methodological limitations, and ethical considerations hinder the practical implementation of these strategies in clinical practice.
Understanding the functioning of the gut–brain axis may open new avenues for the prevention and treatment of neurological and psychiatric disorders through targeted interventions on the gut microbiota.
References
Mayer, E. A., Tillisch, K., & Gupta, A. (2015). Gut/brain axis and the microbiota. Journal of Clinical Investigation, 125(3), 926–938.
Cryan, J. F., O’Riordan, K. J., Sandhu, K., Peterson, V., & Dinan, T. G. (2020). The gut microbiome in neurological disorders. Lancet Neurology, 19(2), 179–194.
Carabotti, M., Scirocco, A., Maselli, M. A., & Severi, C. (2015). The gut–brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Annals of Gastroenterology, 28(2), 203–209.
Sharon, G., Sampson, T. R., Geschwind, D. H., & Mazmanian, S. K. (2016). The central nervous system and the gut microbiome. Cell, 167(4), 915–932.
Dinan, T. G., & Cryan, J. F. (2017). Gut–brain axis in 2016: Brain–gut–microbiota axis – mood, metabolism and behaviour. Nature Reviews Gastroenterology & Hepatology, 14(2), 69–70.
Morais, L. H., Schreiber, H. L., & Mazmanian, S. K. (2021). The gut microbiota–brain axis in behaviour and brain disorders. Nature Reviews Microbiology, 19(4), 241–255.
Sampson, T. R., & Mazmanian, S. K. (2015). Control of brain development, function, and behavior by the microbiome. Cell Host & Microbe, 17(5), 565–576.
Ma, Q., Xing, C., Long, W., Wang, H. Y., Liu, Q., & Wang, R. F. (2019). Impact of microbiota on central nervous system and neurological diseases: The gut–brain axis. Journal of Neuroinflammation, 16(1), 53.
Bedarf, J. R., Hildebrand, F., Coelho, L. P., et al. (2017). Functional implications of microbial and viral gut metagenome changes in early stage Parkinson’s disease. Genome Medicine, 9(1), 39.
Vogt, N. M., Kerby, R. L., Dill-McFarland, K. A., et al. (2017). Gut microbiome alterations in Alzheimer’s disease. Scientific Reports, 7(1), 13537.
Cekanaviciute, E., Yoo, B. B., Runia, T. F., et al. (2017). Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proceedings of the National Academy of Sciences USA, 114(40), 10713–10718.
Fang, P., Kazmi, S. A., Jameson, K. G., & Hsiao, E. Y. (2020). The microbiome as a modifier of neurodegenerative disease risk. Cell Host & Microbe, 28(2), 201–222.
Kim, M. S., Kim, Y., Choi, H., et al. (2020). Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model. Gut, 69(2), 283–294.
Zhan, X., Stamova, B., & Sharp, F. R. (2018). Lipopolysaccharide associates with amyloid plaques, neurons and oligodendrocytes in Alzheimer’s disease brain: A review. Frontiers in Aging Neuroscience, 10, 42.
Braak, H., & Del Tredici, K. (2008). Nervous system pathology in sporadic Parkinson disease. Neurology, 70(20), 1916–1925.
Sampson, T. R., Debelius, J. W., Thron, T., et al. (2016). Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell, 167(6), 1469–1480.
Kelly, J. R., Borre, Y., O’Brien, C., et al. (2016). Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. Journal of Psychiatric Research, 82, 109–118.
Foster, J. A., & McVey Neufeld, K. A. (2013). Gut–brain axis: How the microbiome influences anxiety and depression. Trends in Neurosciences, 36(5), 305–312.
Yang, T., Santisteban, M. M., Rodriguez, V., et al. (2017). Gut dysbiosis is linked to hypertension, inflammation, and memory impairment in spontaneously hypertensive rats. Hypertension, 69(4), 660–667.
Bastiaanssen, T. F. S., Cowan, C. S. M., Claesson, M. J., Dinan, T. G., & Cryan, J. F. (2019). Making sense of… the microbiome in psychiatry. International Journal of Neuropsychopharmacology, 22(1), 37–52.
Wallace, C. J. K., & Milev, R. V. (2017). The effects of probiotics on depressive symptoms in humans: A systematic review. Annals of General Psychiatry, 16, 14.
Reis, D. J., Ilardi, S. S., Punt, S. E., & Wagenmaker, E. R. (2018). The anxiolytic effect of probiotics: A systematic review and meta-analysis of the clinical and preclinical literature. PLoS ONE, 13(6), e0199041.
Chinna Meyyappan, A., Forth, E., Wallace, C. J. K., & Milev, R. V. (2020). Effect of fecal microbiota transplantation on symptoms of psychiatric disorders: A systematic review. BMC Psychiatry, 20, 299.
Westfall, S., Lomis, N., Kahouli, I., Dia, S. Y., Singh, S. P., & Prakash, S. (2017). Microbiome, probiotics and neurodegenerative diseases: Deciphering the gut–brain axis. Cellular and Molecular Life Sciences, 74(20), 3769–3787.
Morais, L. H., Schreiber, H. L., & Mazmanian, S. K. (2021). The gut microbiota–brain axis in behaviour and brain disorders. Nature Reviews Microbiology, 19(4), 241–255.
Sharon, G., Sampson, T. R., Geschwind, D. H., & Mazmanian, S. K. (2016). The central nervous system and the gut microbiome. Cell, 167(4), 915–932.
27.Cryan, J. F., & Dinan, T. G. (2012). Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience, 13(10), 701–712.
Sampson, T. R., & Mazmanian, S. K. (2015). Control of brain development, function, and behavior by the microbiome. Cell Host & Microbe, 17(5), 565–576.
Bonaz, B., Bazin, T., & Pellissier, S. (2018). The vagus nerve at the interface of the microbiota–gut–brain axis. Frontiers in Neuroscience, 12, 49.
Breit, S., Kupferberg, A., Rogler, G., & Hasler, G. (2018). Vagus nerve as modulator of the brain–gut axis in psychiatric and inflammatory disorders. Frontiers in Psychiatry, 9, 44.
Bravo, J. A., Forsythe, P., Chew, M. V., et al. (2011). Ingestion of Lactobacillus rhamnosus regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences USA, 108(38), 16050–16055.
Furness, J. B. (2012). The enteric nervous system and neurogastroenterology. Nature Reviews Gastroenterology & Hepatology, 9(5), 286–294.
Rao, M., & Gershon, M. D. (2016). The bowel and beyond: The enteric nervous system in neurological disorders. Nature Reviews Gastroenterology & Hepatology, 13(9), 517–528.
Cekanaviciute, E., Yoo, B. B., Runia, T. F., et al. (2017). Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proceedings of the National Academy of Sciences USA, 114(40), 10713–10718.
Fung, T. C., Olson, C. A., & Hsiao, E. Y. (2017). Interactions between the microbiota, immune and nervous systems in health and disease. Nature Neuroscience, 20(2), 145–155.
de Punder, K., & Pruimboom, L. (2015). Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability. Frontiers in Immunology, 6, 223.
37. Zhan, X., Stamova, B., & Sharp, F. R. (2018). Lipopolysaccharide associates with amyloid plaques, neurons and oligodendrocytes in Alzheimer’s disease brain. Frontiers in Aging Neuroscience, 10, 42.
Sudo, N., Chida, Y., Aiba, Y., et al. (2004). Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. Journal of Physiology, 558(Pt 1), 263–275.
Silva, Y. P., Bernardi, A., & Frozza, R. L. (2020). The role of short-chain fatty acids from gut microbiota in gut–brain communication. Frontiers in Endocrinology (Lausanne), 11, 25.
Dalile, B., Van Oudenhove, L., Vervliet, B., & Verbeke, K. (2019). The role of short-chain fatty acids in microbiota–gut–brain communication. Nature Reviews Gastroenterology & Hepatology, 16(8), 461–478.
O’Mahony, S. M., Clarke, G., Borre, Y. E., Dinan, T. G., & Cryan, J. F. (2015). Serotonin, tryptophan metabolism and the brain–gut–microbiome axis. Behavioural Brain Research, 277, 32–48.
Agus, A., Planchais, J., & Sokol, H. (2018). Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host & Microbe, 23(6), 716–724.
43. Braniste, V., Al-Asmakh, M., Kowal, C., et al. (2014). The gut microbiota influences blood–brain barrier permeability in mice. Science Translational Medicine, 6(263), 263ra158.
Ma, Q., Xing, C., Long, W., Wang, H. Y., Liu, Q., & Wang, R. F. (2019). Impact of microbiota on central nervous system and neurological diseases: The gut–brain axis. Journal of Neuroinflammation, 16(1), 53.
Cryan, J. F., O’Riordan, K. J., Sandhu, K., Peterson, V., & Dinan, T. G. (2020). The gut microbiome in neurological disorders. Lancet Neurology, 19(2), 179–194.
Quigley, E. M. M. (2017). Microbiota–brain–gut axis and neurodegenerative diseases. Current Neurology and Neuroscience Reports, 17(12), 94.
Zhu, S., Jiang, Y., Xu, K., et al. (2020). The gut microbiota in neurodegenerative diseases: Insights from clinical and preclinical studies. Frontiers in Cellular Neuroscience, 14, 25.
Holmqvist, S., Chutna, O., Bousset, L., et al. (2014). Direct evidence of Parkinson pathology spread from the gut to the brain in rats. Acta Neuropathologica, 128(6), 805–820.
Braak, H., & Del Tredici, K. (2008). Invited article: Nervous system pathology in sporadic Parkinson disease. Neurology, 70(20), 1916–1925.
Klingelhoefer, L., & Reichmann, H. (2015). Pathogenesis of Parkinson disease—the gut–brain axis and environmental factors. Nature Reviews Neurology, 11(11), 625–636.
Keshavarzian, A., Green, S. J., Engen, P. A., et al. (2015). Colonic bacterial composition in Parkinson’s disease. Movement Disorders, 30(10), 1351–1360.
Mulak, A., & Bonaz, B. (2015). Brain–gut–microbiota axis in Parkinson’s disease. World Journal of Gastroenterology, 21(37), 10609–10620.
Scheperjans, F., Aho, V., Pereira, P. A., et al. (2015). Gut microbiota are related to Parkinson’s disease and clinical phenotype. Movement Disorders, 30(3), 350–358.
Sun, J., Xu, J., Ling, Y., et al. (2019). Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Translational Psychiatry, 9(1), 189.
Vogt, N. M., Kerby, R. L., Dill-McFarland, K. A., et al. (2017). Gut microbiome alterations in Alzheimer’s disease. Scientific Reports, 7(1), 13537.
Zhuang, Z. Q., Shen, L. L., Li, W. W., et al. (2018). Gut microbiota is altered in patients with Alzheimer’s disease. Journal of Alzheimer’s Disease, 63(4), 1337–1346.
Zhan, X., Stamova, B., & Sharp, F. R. (2018). Lipopolysaccharide associates with amyloid plaques, neurons and oligodendrocytes in Alzheimer’s disease brain. Frontiers in Aging Neuroscience, 10, 42.
Friedland, R. P., & Chapman, M. R. (2017). The role of microbial amyloid in neurodegeneration. PLoS Pathogens, 13(12), e1006654.
O’Mahony, S. M., Clarke, G., Borre, Y. E., Dinan, T. G., & Cryan, J. F. (2015). Serotonin, tryptophan metabolism and the brain–gut–microbiome axis. Behavioural Brain Research, 277, 32–48.
Jangi, S., Gandhi, R., Cox, L. M., et al. (2016). Alterations of the human gut microbiome in multiple sclerosis. Nature Communications, 7, 12015.
Miyake, S., Kim, S., Suda, W., et al. (2015). Dysbiosis in the gut microbiota of patients with multiple sclerosis. PLoS ONE, 10(9), e0137429.
Chen, J., Chia, N., Kalari, K. R., et al. (2016). Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Scientific Reports, 6, 28484.
Cekanaviciute, E., Yoo, B. B., Runia, T. F., et al. (2017). Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proceedings of the National Academy of Sciences USA, 114(40), 10713–10718.
Berer, K., Gerdes, L. A., Cekanaviciute, E., et al. (2017). Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proceedings of the National Academy of Sciences USA.
Tankou, S. K., Regev, K., Healy, B. C., et al. (2018). Investigation of probiotics in multiple sclerosis. Multiple Sclerosis, 24(1), 58–63.
Miyake, S., Kim, S., Suda, W., et al. (2020). Short-chain fatty acids ameliorate symptoms in experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 349, 577434.
Foster, J. A., & McVey Neufeld, K.-A. (2013). Gut–brain axis: How the microbiome influences anxiety and depression. Trends in Neurosciences, 36(5), 305–312.
Cryan, J. F., & Dinan, T. G. (2012). Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience, 13(10), 701–712.
Evrensel, A., & Ceylan, M. E. (2015). The gut–brain axis: The missing link in depression. Clinical Psychopharmacology and Neuroscience, 13(3), 239–244.
O’Mahony, S. M., Clarke, G., Borre, Y. E., Dinan, T. G., & Cryan, J. F. (2015). Serotonin, tryptophan metabolism and the brain–gut–microbiome axis. Behavioural Brain Research, 277, 32–48.
Schwarcz, R., & Stone, T. W. (2017). The kynurenine pathway and the brain: Challenges, controversies and promises. Neuropharmacology, 112(Pt B), 237–247.
Diaz Heijtz, R., Wang, S., Anuar, F., et al. (2011). Normal gut microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences USA, 108(7), 3047–3052.
Bravo, J. A., Forsythe, P., Chew, M. V., et al. (2011). Ingestion of Lactobacillus rhamnosus regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences USA, 108(38), 16050–16055.
Jiang, H., Ling, Z., Zhang, Y., et al. (2015). Altered fecal microbiota composition in patients with major depressive disorder. Brain, Behavior, and Immunity, 48, 186–194.
Zheng, P., Zeng, B., Zhou, C., et al. (2016). Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Molecular Psychiatry, 21(6), 786–796.
Kelly, J. R., Borre, Y., O’Brien, C., et al. (2016). Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. Journal of Psychiatric Research, 82, 109–118.
Wallace, C. J. K., & Milev, R. V. (2017). The effects of probiotics on depressive symptoms in humans: A systematic review. Annals of General Psychiatry, 16, 14.
Huang, R., Wang, K., & Hu, J. (2016). Effect of probiotics on depression: A systematic review and meta-analysis of randomized controlled trials. Nutrients, 8(8), 483.
Ng, Q. X., Peters, C., Ho, C. Y. X., Lim, D. Y., & Yeo, W.-S. (2018). A meta-analysis of the use of probiotics to alleviate depressive symptoms. Journal of Affective Disorders, 228, 13–19.
Pariante, C. M., & Lightman, S. L. (2008). The HPA axis in major depression: Classical theories and new developments. Trends in Neurosciences, 31(9), 464–468.
Sudo, N., Chida, Y., Aiba, Y., et al. (2004). Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. Journal of Physiology, 558(Pt 1), 263–275.
Ait-Belgnaoui, A., Durand, H., Cartier, C., et al. (2012). Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology, 37(11), 1885–1895.
Sarkar, A., Lehto, S. M., Harty, S., et al. (2016). Psychobiotics and the manipulation of bacteria–gut–brain signals. Trends in Neurosciences, 39(11), 763–781.
Bravo, J. A., Forsythe, P., Chew, M. V., et al. (2011). Ingestion of Lactobacillus rhamnosus regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences USA, 108(38), 16050–16055.
Messaoudi, M., Lalonde, R., Violle, N., et al. (2011). Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. British Journal of Nutrition, 105(5), 755–764.
Pinto-Sanchez, M. I., Hall, G. B., Ghajar, K., et al. (2017). Probiotic Bifidobacterium longum NCC3001 reduces depression and alters brain activity in patients with irritable bowel syndrome. Gastroenterology, 153(2), 448–459.e8.
Dinan, T. G., Stanton, C., & Cryan, J. F. (2013). Psychobiotics: A novel class of psychotropic. Biological Psychiatry, 74(10), 720–726.
Clapp, M., Aurora, N., Herrera, L., Bhatia, M., Wilen, E., & Wakefield, S. (2017). Gut microbiota’s effect on mental health: The gut–brain axis. Clinical Practice, 7(4), 987.
Strandwitz, P. (2018). Neurotransmitter modulation by the gut microbiota. Brain Research, 1693(Pt B), 128–133.
Kazemi, A., Noorbala, A. A., Azam, K., Eskandari, M. H., & Djafarian, K. (2019). Effect of probiotic and prebiotic supplementation on mood and cognitive function: A systematic review and meta-analysis. Nutrition Reviews, 77(6), 393–403.
Wallace, C. J. K., & Milev, R. V. (2017). The effects of probiotics on depressive symptoms in humans: A systematic review. Annals of General Psychiatry, 16, 14.
Foster, J. A., & McVey Neufeld, K.-A. (2013). Gut–brain axis: How the microbiome influences anxiety and depression. Trends in Neurosciences, 36(5), 305–312.
Bangsgaard Bendtsen, K. M., Krych, L., Sørensen, D. B., et al. (2012). Gut microbiota composition is correlated to grid floor-induced stress and behavior in the BALB/c mouse. PLoS ONE, 7(10), e46231.
Dinan, T. G., & Cryan, J. F. (2017). Gut instincts: Microbiota as a key regulator of brain development, ageing and neurodegeneration. Journal of Physiology, 595(2), 489–503.
Westfall, S., Lomis, N., Kahouli, I., Dia, S. Y., Singh, S. P., & Prakash, S. (2017). Microbiome, probiotics and neurodegenerative diseases: Deciphering the gut–brain axis. Cellular and Molecular Life Sciences, 74(20), 3769–3787.
Sarkar, A., Lehto, S. M., Harty, S., et al. (2016). Psychobiotics and the manipulation of bacteria–gut–brain signals. Trends in Neurosciences, 39(11), 763–781.
Messaoudi, M., Lalonde, R., Violle, N., et al. (2011). Assessment of psychotropic-like properties of a probiotic formulation in rats and human subjects. British Journal of Nutrition, 105(5), 755–764.
Pinto-Sanchez, M. I., Hall, G. B., Ghajar, K., et al. (2017). Probiotic Bifidobacterium longum NCC3001 reduces depression and alters brain activity in IBS patients. Gastroenterology, 153(2), 448–459.e8.
Lew, L. C., et al. (2019). Lactobacillus plantarum P8 alleviates stress and improves cognitive performance. Beneficial Microbes, 10(2), 1–12.
Tian, P., et al. (2019). Bifidobacterium breve CCFM1025 modulates the gut microbiota and alleviates depression-like behavior. Brain, Behavior, and Immunity, 82, 211–223.
Schmidt, K., et al. (2015). Prebiotic intake reduces the waking cortisol response and alters emotional bias. Psychopharmacology (Berlin), 232(10), 1793–1801.
Akbari, E., et al. (2016). Probiotic supplementation improves cognitive function and metabolic status in Alzheimer’s patients. Frontiers in Aging Neuroscience, 8, 256.
Kobayashi, Y., et al. (2017). Therapeutic potential of probiotics in neurodegenerative disorders. Nutrients, 9(10), 1023.
Jacka, F. N., et al. (2010). Association of Western and traditional diets with depression and anxiety in women. American Journal of Psychiatry, 167(3), 305–311.
Sánchez-Villegas, A., et al. (2009). The Mediterranean diet and depression: The SUN cohort study. BMC Medicine, 7, 36.
David, L. A., et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563.
Marco, M. L., et al. (2017). Health benefits of fermented foods: Microbiota and beyond. Current Opinion in Biotechnology, 44, 94–102.
Sun, M. F., & Shen, Y. Q. (2018). Dysbiosis of gut microbiota and microbial metabolites in Parkinson’s disease. Ageing Research Reviews, 45, 53–61.
Xu, R., et al. (2020). The role of the gut microbiota in Alzheimer’s disease: From pathogenesis to clinical applications. Frontiers in Neurology, 11, 608.
Zheng, P., et al. (2016). The gut microbiome from patients with depression modulates depressive-like behaviors in mice. Translational Psychiatry, 6(12), e918.
Cammarota, G., Ianiro, G., Kelly, C. R., et al. (2019). International consensus conference on stool banking for FMT. Gut, 68(12), 2111–2121.
Cryan, J. F., et al. (2019). The microbiota–gut–brain axis. Physiological Reviews, 99(4), 1877–2013.
Mangiola, F., et al. (2016). Gut microbiota in autism and mood disorders. World Journal of Gastroenterology, 22(1), 361–368.
Views:
111
Downloads:
17
Copyright (c) 2025 Jakub Przerwa

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

