THE IMPACT OF HIGH-PROTEIN DIET ON GUT AND METABOLIC HORMONES: A SYSTEMATIC LITERATURE REVIEW 2021-2025
Abstract
Objective: This systematic literature review evaluates the impact of high-protein diets on key gut and metabolic hormones in humans, emphasizing GLP-1, glucagon, insulin, ghrelin, and leptin.
Methods: A systematic review of scientific literature from 2021-2025 was conducted. Randomized controlled trials (RCTs), crossover studies, and meta-analyses examining effects of high-protein diets (≥25-30% energy from protein) on hormonal and metabolic parameters were analyzed in healthy individuals and those with obesity, type 2 diabetes, and other metabolic conditions.
Results: High-protein diets consistently stimulated GLP-1 secretion, with active GLP-1 increasing 87-156% after a single meal compared to controls. Whey protein demonstrated strong insulinotropic properties, with optimal effects at 15-55g consumed 15-30 minutes pre-meal. Significant postprandial glycemia reduction was observed (mean -1.4 mmol/L; up to -2.0 mmol/L in T2DM individuals) alongside improved insulin sensitivity indices (HOMA-IR, Matsuda index). Increased glucagon/insulin ratio promoted fat oxidation and preferential adipose tissue loss while preserving lean mass. High-protein diets suppressed ghrelin, modulated leptin, and enhanced satiety, though appetite hormone effects were more complex than incretin responses. Long-term interventions (6-12 months) demonstrated visceral and hepatic fat reduction (mean -42% IHL), improved lipid profiles, and beneficial gut microbiota changes.
Conclusions: High-protein diets beneficially impact gut and metabolic hormones through incretin stimulation, glucagon/insulin ratio modulation, improved insulin sensitivity, and appetite hormone regulation. These effects translate to clinically significant metabolic improvements, particularly in individuals with type 2 diabetes and obesity. Optimal dosing (25-35% energy from protein, 1.2-2.0 g/kg/day) and timing (preload 15-30 minutes pre-meal) maximize metabolic benefits, indicating potential for effective dietary intervention in preventing and treating metabolic disorders.
References
Ahrentløv, N., Kubrak, O., Frederiksen, A. S., Lassen, M., Malita, A., Koyama, T., John, A., Imig, C., Richter, E. A., Sigvardsen, C. M., Madsen, P. E. H., Halberg, K. V., Nagy, S., Texada, M. J., & Rewitz, K. (2025). Protein-responsive gut hormone tachykinin directs food choice and impacts lifespan. Nature Metabolism. 1. Advance online publication. https://doi.org/10.1038/s42255-025-01267-0
Ang, T., Mason, S. A., Dao, G. M., Bruce, C. R., & Kowalski, G. M. (2023). The impact of a single dose of whey protein on glucose flux and metabolite profiles in normoglycemic males: Insights into glucagon and insulin biology. American Journal of Physiology-Endocrinology and Metabolism, 325(6), E688–E699. https://doi.org/10.1152/ajpendo.00182.2023
Ataeinosrat, A., Haghighi, M. M., Abednatanzi, H., Soltani, M., Ghanbari-Niaki, A., Nouri-Habashi, A., Amani-Shalamzari, S., Mossayebi, A., Khademosharie, M., Johnson, K. E., VanDusseldorp, T. A., Saeidi, A., & Zouhal, H. (2022). Effects of three different modes of resistance training on appetite hormones in males with obesity. Frontiers in Physiology, 13, Article 827335. https://doi.org/10.3389/fphys.2022.827335
Bel Lassen, P., Belda, E., Prifti, E., Dao, M. C., Specque, F., Henegar, C., Rinaldi, L., Wang, X., Kennedy, S. P., Zucker, J.-D., Calame, W., Lamarche, B., Claus, S. P., & Clément, K. (2021). Protein supplementation during an energy-restricted diet induces visceral fat loss and gut microbiota amino acid metabolism activation: A randomized trial. Scientific Reports, 11, Article 15620. https://doi.org/10.1038/s41598-021-94916-9
Buso, M. E. C., Seimon, R. V., McClintock, S., Muirhead, R., Atkinson, F. S., Brodie, S., Dodds, J., Zibellini, J., Das, A., Wild-Taylor, A. L., Burk, J., Fogelholm, M., Raben, A., Brand-Miller, J. C., & Sainsbury, A. (2021). Can a higher protein/low glycemic index vs. a conventional diet attenuate changes in appetite-regulating hormones and free-living energy intake during weight loss? Frontiers in Nutrition, 8, Article 656322. https://doi.org/10.3389/fnut.2021.640538
Dalgaard, L. B., Kruse, D. Z., Norup, K., Andersen, B. V., & Hansen, M. (2024). A dairy-based, protein-rich breakfast enhances satiety and cognitive concentration before lunch in overweight to obese young females: A randomized controlled crossover study. Journal of Dairy Science, 107(4), 2653–2667. https://doi.org/10.3168/jds.2023-24152
Deru, L. S., Davidson, L. E., Chamberlain, C. J., Lance, G. R., Gipson, E. Z., Bikman, B. T., Tucker, L. A., Coleman, J. L., & Bailey, B. W. (2023). The effects of exercise on appetite-regulating hormone concentrations over a 36-h fast in healthy young adults: A randomized crossover study. Nutrients, 15(9), Article 2013. https://doi.org/10.3390/nu15081911
Dugardin, C., Fleury, L., Touche, V., Ahdach, F., Lesage, J., Tenenbaum, M., Everaert, N., Briand, O., Lestavel, S., Ravallec, R., & Cudennec, B. (2022). An exploratory study of the role of dietary proteins in the regulation of intestinal glucose absorption and hepatic glucose metabolism. Frontiers in Nutrition, 9, Article 814816. https://doi.org/10.3389/fnut.2021.769773
Ekberg, N. R., Catrina, S.-B., & Spégel, P. (2024). A protein-rich meal provides beneficial glycemic and hormonal responses as compared to meals enriched in carbohydrate, fat or fiber, in individuals with or without type-2 diabetes. Frontiers in Nutrition, 11, Article 1395745. https://doi.org/10.3389/fnut.2024.1395745
Elahikhah, M., Haidari, F., Khalesi, S., Shahbazian, H., Mohammadshahi, M., & Aghamohammadi, V. (2024). Milk protein concentrate supplementation improved appetite, metabolic parameters, adipocytokines, and body composition in dieting women with obesity: A randomized controlled trial. BMC Nutrition, 10, Article 80. https://doi.org/10.1186/s40795-024-00879-1
Evangelista, L. S., Jose, M. M., Sallam, H., Serag, H., Golovko, G., Khanipov, K., Hamilton, M. A., & Fonarow, G. C. (2021). High-protein vs. standard-protein diets in overweight and obese patients with heart failure and diabetes mellitus: Findings of the Pro-HEART trial. ESC Heart Failure, 8(2), 1342–1348. https://doi.org/10.1002/ehf2.13213
Hajishizari, S., Imani, H., Mehranfar, S., Yekaninejad, M. S., Mirzababaei, A., Clark, C. C. T., & Mirzaei, K. (2022). The association of appetite and hormones (leptin, ghrelin, and insulin) with resting metabolic rate in overweight/obese women: A case–control study. BMC Nutrition, 8, Article 37. https://doi.org/10.1186/s40795-022-00531-w
Hira, T., Sekishita, M., & Hara, H. (2021). Blood sampling from rat ileal mesenteric vein revealed a major role of dietary protein in meal-induced GLP-1 response. Frontiers in Endocrinology, 12, Article 689685. https://doi.org/10.3389/fendo.2021.689685
Ignot-Gutiérrez, A., Serena-Romero, G., Martínez, A. J., Guajardo-Flores, D., Alvarado-Olivarez, M., & Cruz-Huerta, E. (2024). Proteins and peptides from food sources with effect on satiety and their role as anti-obesity agents: A narrative review. Nutrients, 16(20), Article 3512. https://doi.org/10.3390/nu16203512
Jiang, S., Ji, S., Tang, X., Wang, T., Wang, H., & Meng, X. (2022). A comparison study on the therapeutic effect of high protein diets based on pork protein versus soybean protein on obese mice. Foods, 11(9), Article 1251. https://doi.org/10.3390/foods11091227
Kempf, K., Schaller, N., Röhling, M., Banzer, W., Braumann, K. M., Halle, M., McCarthy, D., Predel, H. G., Schenkenberger, I., Tan, S., Toplak, H., Martin, S., Berg, A., & ACOORH Study Group. (2022). Early and strong leptin reduction is predictive for long-term weight loss during high-protein, low-glycaemic meal replacement—A subanalysis of the randomised-controlled ACOORH trial. Nutrients, 14(12), Article 2491. https://doi.org/10.3390/nu14122537
Lesgards, J.-F. (2023). Benefits of whey proteins on type 2 diabetes mellitus parameters and prevention of cardiovascular diseases. Nutrients, 15(5), Article 1294. https://doi.org/10.3390/nu15051294
Mensink, M. (2024). Dietary protein, amino acids and type 2 diabetes mellitus: A short review. Frontiers in Nutrition, 11, Article 1445981. https://doi.org/10.3389/fnut.2024.1445981
Neacsu, M., Duncan, G. J., Cantlay, L., Fyfe, C., Anderson, S., Horgan, G., Johnstone, A. M., Russell, W. R., Vaughan, N. J., Multari, S., Haljas, E., & Scobbie, L. (2022). Hemp and buckwheat are valuable sources of dietary amino acids, beneficially modulating gastrointestinal hormones and promoting satiety in healthy volunteers. European Journal of Nutrition, 61(2), 1057–1072. https://doi.org/10.1007/s00394-021-02711-z
Ni, Y., Zheng, A., Hu, Y., Rong, N., Zhang, Q., Long, W., Yang, S., Nan, S., Zhang, L., Zhou, K., Wu, T., & Fu, Z. (2022). Compound dietary fiber and high-grade protein diet improves glycemic control and ameliorates diabetes and its comorbidities through remodeling the gut microbiota in mice. Frontiers in Nutrition, 9, Article 959703. https://doi.org/10.3389/fnut.2022.959703
Oliveira, C. L. P., Boulé, N. G., Berg, A., Sharma, A. M., Elliott, S. A., Siervo, M., Ghosh, S., & Prado, C. M. (2021). Consumption of a high-protein meal replacement leads to higher fat oxidation, suppression of hunger, and improved metabolic profile after an exercise session. Nutrients, 13(1), Article 155. https://doi.org/10.3390/nu13010155
Oliveira, C. L. P., Boulé, N. G., Elliott, S. A., Sharma, A. M., Siervo, M., Berg, A., Ghosh, S., & Prado, C. M. (2022). A high-protein total diet replacement alters the regulation of food intake and energy homeostasis in healthy, normal-weight adults. European Journal of Nutrition, 61(4), 1849–1861. https://doi.org/10.1007/s00394-021-02747-1
Rodrigo-Carbó, C., Madinaveitia-Nisarre, L., Pérez-Calahorra, S., Gracia-Rubio, I., Mateo-Gallego, R., Galindo-Lalana, C., Lamiquiz-Moneo, I., Cebollada, A., & Civeira, F. (2024). Low-calorie, high-protein diets, regardless of protein source, improve glucose metabolism and cardiometabolic profiles in subjects with prediabetes or type 2 diabetes and overweight or obesity. Diabetes, Obesity and Metabolism. Advance online publication. https://doi.org/10.1111/dom.16013
Schuppelius, B., Ost, A.-C., Schüler, R., Pivovarova-Ramich, O., Hornemann, S., Busjahn, A., Machann, J., Kruse, M., Park, S. Q., Kabisch, S., Csanalosi, M., & Pfeiffer, A. F. H. (2024). Alterations in glucagon levels and the glucagon-to-insulin ratio in response to high dietary fat or protein intake in healthy lean adult twins: A post hoc analysis. Nutrients, 16(22), Article 3869. https://doi.org/10.3390/nu16223905
Skytte, M. J., Samkani, A., Astrup, A., Frystyk, J., Rehfeld, J. F., Holst, J. J., Madsbad, S., Burling, K., Fenger, M., Thomsen, M. N., Larsen, T. M., Krarup, T., & Haugaard, S. B. (2021). Effects of carbohydrate restriction on postprandial glucose metabolism, β-cell function, gut hormone secretion, and satiety in patients with type 2 diabetes. American Journal of Physiology-Endocrinology and Metabolism, 320(1), E7–E18. https://doi.org/10.1152/ajpendo.00165.2020
Smedegaard, S., Kampmann, U., Ovesen, P. G., Støvring, H., & Rittig, N. (2023). Whey protein premeal lowers postprandial glucose concentrations in adults compared with water—The effect of timing, dose, and metabolic status: A systematic review and meta-analysis. The American Journal of Clinical Nutrition, 118(2), 391–405. https://doi.org/10.1016/j.ajcnut.2023.05.012
Sridonpai, P., Prachansuwan, A., Praengam, K., Tuntipopipat, S., & Kriengsinyos, W. (2021). Postprandial effects of a whey protein-based multi-ingredient nutritional drink compared with a normal breakfast on glucose, insulin, and active GLP-1 response among type 2 diabetic subjects: A crossover randomised controlled trial. Journal of Nutritional Science, 10, Article e49. https://doi.org/10.1017/jns.2021.41
Thomas, S., Besecker, B., Choe, Y., & Christofides, E. (2024). Postprandial glycemic response to a high-protein diabetes-specific nutritional shake compared to isocaloric instant oatmeal in people with type 2 diabetes: A randomized, controlled, crossover trial. Frontiers in Clinical Diabetes and Healthcare, 5, Article 1399410. https://doi.org/10.3389/fcdhc.2024.1399410
Wang, K., Peng, X., Yang, A., Huang, Y., Tan, Y., Qian, Y., Lv, F., & Si, H. (2022). Effects of diets with different protein levels on lipid metabolism and gut microbes in the host of different genders. Frontiers in Nutrition, 9, Article 940217. https://doi.org/10.3389/fnut.2022.940217
Watkins, J. D., Koumanov, F., & Gonzalez, J. T. (2023). Protein- and calcium-mediated GLP-1 secretion: A narrative review. Advances in Nutrition, 14(2), 263–279. https://doi.org/10.1093/advances/nmab078
Yanagisawa, Y. (2022). How dietary amino acids and high protein diets influence insulin secretion. Physiological Reports, 10(3), Article e15577. https://doi.org/10.14814/phy2.15577
Yoshinari, Y., Koyama, T., John, A., Imig, C., Richter, E. A., Sigvardsen, C. M., Madsen, P. E. H., Halberg, K. V., Nagy, S., Texada, M. J., Tanimoto, H., Kobayashi, T., Matsuyama, M., & Niwa, R. (2024). A high-protein diet-responsive gut hormone regulates behavioral and metabolic optimization in Drosophila melanogaster. Nature Communications, 15, Article 10506. https://doi.org/10.1038/s41467-024-55050-y
Zhang, J., Pivovarova-Ramich, O., Kabisch, S., Markova, M., Hornemann, S., Sucher, S., Rohn, S., Machann, J., & Pfeiffer, A. F. H. (2022). High protein diets improve liver fat and insulin sensitivity by prandial but not fasting glucagon secretion in type 2 diabetes. Frontiers in Nutrition, 9, Article 808346. https://doi.org/10.3389/fnut.2022.808346
Zhu, R., Fogelholm, M., Larsen, T. M., Poppitt, S. D., Silvestre, M. P., Vestentoft, P. S., Jalo, E., Navas-Carretero, S., Huttunen-Lenz, M., Taylor, M. A., Stratton, G., Swindell, N., Kaartinen, N. E., Lam, T., Handjieva-Darlenska, T., Handjiev, S., Schlicht, W., Martinez, J. A., Seimon, R. V., Sainsbury, A., Macdonald, I. A., Westerterp-Plantenga, M. S., Brand-Miller, J., & Raben, A. (2021). A high-protein, low glycemic index diet suppresses hunger but not weight regain after weight loss: Results from a large European multicenter study. Frontiers in Nutrition, 8, Article 700149. https://doi.org/10.3389/fnut.2021.685648
Copyright (c) 2025 Karolina Świerk, Damian Podkościelny, Wojciech Machulski, Martyna Ciarkowska, Jan Makulski, Kamil Franczyk, Maria Gierasimiuk, Michal Gorski, Adam Januszkiewicz, Wiktoria Januszkiewicz

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

