IMPACT OF PHYSICAL ACTIVITY ON HEALTH AND AGING: A SYSTEMATIC REVIEW OF BENEFITS FOR OLDER ADULTS
Abstract
Introduction: The global aging trend poses major challenges for healthcare systems striving to preserve older adults’ health and well-being. Physical activity stands out as an accessible, low-cost preventive measure that supports both physical and cognitive vitality.
Aim of the study: This systematic review evaluates current research on the effects of physical activity on health and aging, focusing on its physiological, psychological, and social benefits for individuals aged 60 and older.
Methodology: Peer-reviewed studies indexed in PubMed, Scopus, and Web of Science were analyzed. Eligible papers examined the health outcomes of various physical activity forms among older adults.
Results: Evidence consistently indicates that regular physical activity improves cardiovascular efficiency, muscle strength, and bone density, while reducing fall risk. It also enhances cognitive function and mitigates symptoms of depression and anxiety. Socially, active older adults report greater independence, life satisfaction, and community participation.
Conclusions: Consistent physical activity is an effective and essential component of healthy aging. Its inclusion in public health strategies should be prioritized to improve older adults’ quality of life. Future research should refine exercise guidelines and adapt interventions to diverse health and psychosocial conditions in aging populations.
References
Chodzko-Zajko, W. J., Proctor, D. N., Fiatarone Singh, M. A., et al. (2009). Exercise and physical activity for older adults. Medicine & Science in Sports & Exercise, 41(7), 1510–1530. https://doi.org/10.1249/mss.0b013e3181a0c95c
Warburton, D. E. R., Nicol, C. W., & Bredin, S. S. D. (2006). Health benefits of physical activity: The evidence. Canadian Medical Association Journal, 174(6), 801–809. https://doi.org/10.1503/cmaj.051351
de Groot, L. C. P. M. G., Verheijden, M. W., de Henauw, S., Schroll, M., & van Staveren, W. A. (2004). Lifestyle, nutritional status, health, and mortality in elderly people across Europe: A review of the longitudinal results of the SENECA study. The Journals of Gerontology: Series A, 59(12), 1277–1284. https://doi.org/10.1093/gerona/59.12.1277
Roine, E., Roine, R. P., Räsänen, P., Vuori, I., Sintonen, H., & Saarto, T. (2009). Cost-effectiveness of interventions based on physical exercise in the treatment of various diseases: A systematic literature review. International Journal of Technology Assessment in Health Care, 25, 427–454. https://doi.org/10.1017/S0266462309990353
Janssen, I., Shepard, D. S., Katzmarzyk, P. T., & Roubenoff, R. (2004). The healthcare costs of sarcopenia in the United States. Journal of the American Geriatrics Society, 52(1), 80–85. https://doi.org/10.1111/j.1532-5415.2004.52014.x
Konecka, M., Kotkowiak, L., & Rotter, I. (2020). Sarcopenia – risk factors, pathogenesis, diagnostic criteria. Pediatria i Medycyna Rodzinna, 16(4), 349–354. https://doi.org/10.15557/pimr.2020.0063
Clark, B. C., & Manini, T. M. (2010). Functional consequences of sarcopenia and dynapenia in the elderly. Current Opinion in Clinical Nutrition and Metabolic Care, 13(3), 271–276. https://doi.org/10.1097/MCO.0b013e328337819e
Law, T. D., Clark, L. A., & Clark, B. C. (2016). Resistance exercise to prevent and manage sarcopenia and dynapenia. Annual Review of Gerontology and Geriatrics, 36(1), 205–228. https://doi.org/10.1891/0198-8794.36.205
Naseeb, M. A., & Volpe, S. L. (2017). Protein and exercise in the prevention of sarcopenia and aging. Nutrition Research, 40, 1–20. https://doi.org/10.1016/j.nutres.2017.01.001
Vikberg, S., Sörlén, N., Brandén, L., et al. (2019). Effects of resistance training on functional strength and muscle mass in 70-year-old individuals with pre-sarcopenia: A randomized controlled trial. Journal of the American Medical Directors Association, 20(1), 28–34. https://doi.org/10.1016/j.jamda.2018.09.011
Liu, C. K., Leng, X., Hsu, F.-C., et al. (2014). The impact of sarcopenia on a physical activity intervention: The Lifestyle Interventions and Independence for Elders Pilot Study (LIFE-P). The Journal of Nutrition, Health & Aging, 18(1), 59–64. https://doi.org/10.1007/s12603-013-0369-0
Clark, D. J., Patten, C., Reid, K. F., Carabello, R. J., Phillips, E. M., & Fielding, R. A. (2010). Muscle performance and physical function are associated with voluntary rate of neuromuscular activation in older adults. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 66A(1), 115–121. https://doi.org/10.1093/gerona/glq153
Levinger, I., Phu, S., & Duque, G. (2016). Sarcopenia and osteoporotic fractures. Clinical Reviews in Bone and Mineral Metabolism, 14(1), 38–44. https://doi.org/10.1007/s12018-016-9204-6
Lorentzon, M., & Cummings, S. R. (2015). Osteoporosis: The evolution of a diagnosis. Journal of Internal Medicine, 277(6), 650–661. https://doi.org/10.1111/joim.12369
Pinheiro, M. B., Oliveira, J., Bauman, A., Fairhall, N., Kwok, W., & Sherrington, C. (2020). Evidence on physical activity and osteoporosis prevention for people aged 65+ years: A systematic review to inform the WHO guidelines on physical activity and sedentary behaviour. International Journal of Behavioral Nutrition and Physical Activity, 17(1). https://doi.org/10.1186/s12966-020-01040-4
Ashe, M. C., Gorman, E., Khan, K. M., et al. (2013). Does frequency of resistance training affect tibial cortical bone density in older women? A randomized controlled trial. Osteoporosis International, 24(2), 623–632. https://doi.org/10.1007/s00198-012-2000-3
Duckham, R. L., Masud, T., Taylor, R., et al. (2015). Randomised controlled trial of the effectiveness of community group and home-based falls prevention exercise programmes on bone health in older people: The ProAct65+ bone study. Age and Ageing, 44(4), 573–579. https://doi.org/10.1093/ageing/afv055
Allison, S. J., Folland, J. P., Rennie, W. J., Summers, G. D., & Brooke-Wavell, K. (2013). High impact exercise increased femoral neck bone mineral density in older men: A randomised unilateral intervention. Bone, 53(2), 321–328. https://doi.org/10.1016/j.bone.2012.12.045
Nikander, R., Sievänen, H., Heinonen, A., Daly, R. M., Uusi-Rasi, K., & Kannus, P. (2010). Targeted exercise against osteoporosis: A systematic review and meta-analysis for optimising bone strength throughout life. BMC Medicine, 8(1). https://doi.org/10.1186/1741-7015-8-47
Michaëlsson, K., Olofsson, H., Jensevik, K., et al. (2007). Leisure physical activity and the risk of fracture in men. PLoS Medicine, 4(6). https://doi.org/10.1371/journal.pmed.0040199
Hollmann, W., Strüder, H. K., Tagarakis, C. V. M., & King, G. (2007). Physical activity and the elderly. European Journal of Cardiovascular Prevention & Rehabilitation, 14(6), 730–739. https://doi.org/10.1097/HJR.0b013e32828622f9
Nielsen, B. R., Abdulla, J., Andersen, H. E., Schwarz, P., & Suetta, C. (2018). Sarcopenia and osteoporosis in older people: A systematic review and meta-analysis. European Geriatric Medicine, 9(4), 419–434. https://doi.org/10.1007/s41999-018-0079-6
Varahra, A., Rodrigues, I. B., MacDermid, J. C., Bryant, D., & Birmingham, T. (2018). Exercise to improve functional outcomes in persons with osteoporosis: A systematic review and meta-analysis. Osteoporosis International, 29(2), 265–286. https://doi.org/10.1007/s00198-017-4339-y
Huang, C. Y., Mayer, P. K., Wu, M. Y., Liu, D. H., Wu, P. C., & Yen, H. R. (2022). The effect of Tai Chi in elderly individuals with sarcopenia and frailty: A systematic review and meta-analysis of randomized controlled trials. Ageing Research Reviews, 82, 101747. https://doi.org/10.1016/j.arr.2022.101747
Ahmed, H. M., Blaha, M. J., Nasir, K., Rivera, J. J., & Blumenthal, R. S. (2012). Effects of physical activity on cardiovascular disease. The American Journal of Cardiology, 109(2), 288–295. https://doi.org/10.1016/j.amjcard.2011.08.042
Hegde, S. M., & Solomon, S. D. (2015). Influence of physical activity on hypertension and cardiac structure and function. Current Hypertension Reports, 17(10). https://doi.org/10.1007/s11906-015-0588-3
Km, D., & S., D. (2013, December 1). Physical activity and the prevention of hypertension. Current Hypertension Reports. https://pubmed.ncbi.nlm.nih.gov/24052212/
Buford, T. W. (2016). Hypertension and aging. Ageing Research Reviews, 26(1), 96–111. https://doi.org/10.1016/j.arr.2016.01.007
Tian, Y., & Zhang, Y. (2022). The relationship between hypertension and physical activity in middle-aged and older adults controlling for demographic, chronic disease, and mental health variables. Medicine, 101(47), e32092. https://doi.org/10.1097/MD.0000000000032092
Hambrecht, R., Adams, V., Erbs, S., et al. (2003). Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation, 107(25), 3152–3158. https://doi.org/10.1161/01.CIR.0000074229.93804.5C
Roach, M. R., & Burton, A. C. (1959). The effect of age on the elasticity of human iliac arteries. Canadian Journal of Biochemistry and Physiology, 37(4), 557–570. https://doi.org/10.1139/o59-059
Thanassoulis, G., Lyass, A., Benjamin, E. J., et al. (2012). Relations of exercise blood pressure response to cardiovascular risk factors and vascular function in the Framingham Heart Study. Circulation, 125(23), 2836–2843. https://doi.org/10.1161/CIRCULATIONAHA.111.063933
Golbidi, S., & Laher, I. (2012). Exercise and the cardiovascular system. Cardiology Research and Practice, 2012(210852), 1–15. https://doi.org/10.1155/2012/210852
Sacks, H. S., & Fain, J. N. (2007). Human epicardial adipose tissue: A review. American Heart Journal, 153(6), 907–917. https://doi.org/10.1016/j.ahj.2007.03.019
Honda, H., Igaki, M., Komatsu, M., Tanaka, S., Takaishi, T., & Hayashi, T. (2021). Stair climbing–descending exercise following meals improves 24-hour glucose excursions in people with type 2 diabetes. The Journal of Physical Fitness and Sports Medicine, 10(1), 51–56. https://doi.org/10.7600/jpfsm.10.51
Mestek, M. L. (2009). Physical activity, blood lipids, and lipoproteins. American Journal of Lifestyle Medicine, 3(4), 279–283. https://doi.org/10.1177/1559827609334885
Durstine, J. L., Grandjean, P. W., Cox, C. A., & Thompson, P. D. (2002). Lipids, lipoproteins, and exercise. Journal of Cardiopulmonary Rehabilitation, 22(6), 385–398. https://doi.org/10.1097/00008483-200211000-00002
Pedro, Freitas, F. R., Bachi, L., et al. (2023). Regular practice of physical activity improves cholesterol transfers to high-density lipoprotein (HDL) and other HDL metabolic parameters in older adults. Nutrients, 15(23), 4871. https://doi.org/10.3390/nu15234871
Couillard, C., Després, J.-P., Lamarche, B., et al. (2001). Effects of endurance exercise training on plasma HDL cholesterol levels depend on levels of triglycerides. Arteriosclerosis, Thrombosis, and Vascular Biology, 21(7), 1226–1232. https://doi.org/10.1161/hq0701.092137
Zhang, Y., Zhu, C. G., Xu, R. X., et al. (2016). HDL subfractions and very early CAD: Novel findings from untreated patients in a Chinese cohort. Scientific Reports, 6, 30741. https://doi.org/10.1038/srep30741
Pandey, A., Allen, N. B., Ayers, C., et al. (2017). Fitness in young adulthood and long-term cardiac structure and function: The CARDIA Study. JACC: Heart Failure, 5(5), 347–355. https://doi.org/10.1016/j.jchf.2016.11.014
Pandey, A., Patel, K. V., Vaduganathan, M., et al. (2018). Physical activity, fitness, and obesity in heart failure with preserved ejection fraction. JACC: Heart Failure, 6(12), 975–982. https://doi.org/10.1016/j.jchf.2018.09.006
Fujimoto, N., Prasad, A., Hastings, J. L., et al. (2010). Cardiovascular effects of 1 year of progressive and vigorous exercise training in previously sedentary individuals older than 65 years of age. Circulation, 122(18), 1797–1805. https://doi.org/10.1161/CIRCULATIONAHA.110.973784
Vigorito, C., & Giallauria, F. (2014). Effects of exercise on cardiovascular performance in the elderly. Frontiers in Physiology, 5, 51. https://doi.org/10.3389/fphys.2014.00051
Pandey, A., Patel, M., Gao, A., et al. (2015). Changes in mid-life fitness predicts heart failure risk at a later age independent of interval development of cardiac and noncardiac risk factors: The Cooper Center Longitudinal Study. American Heart Journal, 169(2), 290–297.e1. https://doi.org/10.1016/j.ahj.2014.10.017
Erikssen, G., Liestøl, K., Bjørnholt, J., Thaulow, E., Sandvik, L., & Erikssen, J. (1998). Changes in physical fitness and changes in mortality. The Lancet, 352(9130), 759–762. https://doi.org/10.1016/S0140-6736(98)02268-5
Shankar, S. (2010). Biology of aging brain. Indian Journal of Pathology and Microbiology, 53(4), 595. https://doi.org/10.4103/0377-4929.71995
Yankner, B. A., Lu, T., & Loerch, P. (2008). The aging brain. Annual Review of Pathology: Mechanisms of Disease, 3(1), 41–66. https://doi.org/10.1146/annurev.pathmechdis.2.010506.092044
Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., & Bäckman, L. (2012). Memory aging and brain maintenance. Trends in Cognitive Sciences, 16(5), 292–305. https://doi.org/10.1016/j.tics.2012.04.005
Benedict, C., Brooks, S. J., Kullberg, J., et al. (2013). Association between physical activity and brain health in older adults. Neurobiology of Aging, 34(1), 83–90. https://doi.org/10.1016/j.neurobiolaging.2012.04.013
Bherer, L., Erickson, K. I., & Liu-Ambrose, T. (2013). A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. Journal of Aging Research, 2013(1), 1–8. https://doi.org/10.1155/2013/657508
Isaacs, K. R., Anderson, B. J., Alcantara, A. A., Black, J. E., & Greenough, W. T. (1992). Exercise and the brain: Angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. Journal of Cerebral Blood Flow & Metabolism, 12(1), 110–119. https://doi.org/10.1038/jcbfm.1992.14
Gertz, K., Priller, J., Kronenberg, G., et al. (2006). Physical activity improves long-term stroke outcome via endothelial nitric oxide synthase–dependent augmentation of neovascularization and cerebral blood flow. Circulation Research, 99(10), 1132–1140. https://doi.org/10.1161/01.RES.0000250175.14861.77
Ratey, J. J., & Loehr, J. E. (2011). The positive impact of physical activity on cognition during adulthood: A review of underlying mechanisms, evidence and recommendations. Reviews in the Neurosciences, 22(2). https://doi.org/10.1515/rns.2011.017
Fabel, K., & Kempermann, G. (2008). Physical activity and the regulation of neurogenesis in the adult and aging brain. NeuroMolecular Medicine, 10(2), 59–66. https://doi.org/10.1007/s12017-008-8031-4
Lafenetre, P., Leske, O., Wahle, P., & Heumann, R. (2011). The beneficial effects of physical activity on impaired adult neurogenesis and cognitive performance. Frontiers in Neuroscience, 5. https://doi.org/10.3389/fnins.2011.00051
Pintilie, S. R., Condrat, A. D., Fodor, A., et al. (2021). Neuroprotective effects of physical exercise: Implications in health and disease. Romanian Medical Journal, 68(3), 383–389. https://doi.org/10.37897/rmj.2021.3.9
Alexopoulos, G. S. (2005). Depression in the elderly. The Lancet, 365(9475), 1961–1970. https://doi.org/10.1016/S0140-6736(05)66665-2
de Oliveira, L. da S. S. C. B., Souza, E. C., Rodrigues, R. A. S., Fett, C. A., & Piva, A. B. (2019). The effects of physical activity on anxiety, depression, and quality of life in elderly people living in the community. Trends in Psychiatry and Psychotherapy, 41(1), 36–42. https://doi.org/10.1590/2237-6089-2017-0129
Huang, Y., Xu, P., Fu, X., et al. (2021). The effect of triglycerides in the associations between physical activity, sedentary behavior and depression: An interaction and mediation analysis. Journal of Affective Disorders, 295, 1377–1385. https://doi.org/10.1016/j.jad.2021.09.005
Yi, E. S., & Hwang, H. J. (2015). A study on the social behavior and social isolation of the elderly Korea. Journal of Exercise Rehabilitation, 11(3), 125–132. https://doi.org/10.12965/jer.150215
Mura, G., & Carta, M. G. (2013). Physical activity in depressed elderly: A systematic review. Clinical Practice & Epidemiology in Mental Health, 9(1), 125–135. https://doi.org/10.2174/1745017901309010125
Byeon, H. (2019). Relationship between physical activity level and depression of elderly people living alone. International Journal of Environmental Research and Public Health, 16(20), 4051. https://doi.org/10.3390/ijerph16204051
Kandola, A., Ashdown-Franks, G., Hendrikse, J., Sabiston, C. M., & Stubbs, B. (2019). Physical activity and depression: Towards understanding the antidepressant mechanisms of physical activity. Neuroscience & Biobehavioral Reviews, 107, 525–539. https://doi.org/10.1016/j.neubiorev.2019.09.040
Zhang, S., Xiang, K., Li, S., Pan, H. F. (2021). Physical activity and depression in older adults: The knowns and unknowns. Psychiatry Research, 297, 113738. https://doi.org/10.1016/j.psychres.2021.113738
Zhang, Y., & Zhang, Y. (2023). The effects of physical activity and exercise therapy on frail elderly depression: A narrative review. Medicine, 102(34), e34908. https://doi.org/10.1097/MD.0000000000034908
Lopresti, A. L., Maker, G. L., Hood, S. D., & Drummond, P. D. (2014). A review of peripheral biomarkers in major depression: The potential of inflammatory and oxidative stress biomarkers. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 48, 102–111. https://doi.org/10.1016/j.pnpbp.2013.09.017
Luan, H., Huang, Y., Li, J., Sun, L., & Fan, Y. (2018). Effect of local vibration and passive exercise on the hormones and neurotransmitters of hypothalamic–pituitary–adrenal axis in hindlimb unloading rats. Microgravity Science and Technology, 30(4), 483–489. https://doi.org/10.1007/s12217-018-9609-6
Copyright (c) 2025 Justyna Stryjecka, Kacper Rozenberg, Karolina Niewola, Martyna Różańska

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

