TRAINING METHODS IN NEUROSURGERY - WHAT SOLUTIONS XXI CENTURY CAN OFFER?

Keywords: Surgical Education, Deliberate Practice, Simulation, Mixed Reality

Abstract

Neurosurgical training has evolved in recent years, influenced by technological innovations, an increasing complexity of neurosurgical procedures, and growing patients’ expectations. While highly effective, traditional methods of learning in neurosurgery require the support of modern technologies to address the intricacy of the field. By synthesizing recent findings and trends, this article aims to provide valuable perspectives on improving neurosurgical training programs to prepare the next generation of neurosurgeons for the demands of a rapidly advancing field. This review explores innovations in neurosurgical education, highlighting 3D printing, virtual reality, augmented reality, and artificial intelligence. New technologies support traditional neurosurgical education, providing reusability, limitless repetitions, relevant feedback, and increased procedure comprehension, but with partial realism. Hence, high-technology solutions remain a valuable complement to traditional training.

References

Bydon M, Abt NB, De la Garza-Ramos R, Macki M, Witham TF, Gokaslan ZL, Bydon A, Huang J. Impact of resident participation on morbidity and mortality in neurosurgical procedures: an analysis of 16,098 patients. J Neurosurg. 2015; 122(4):955-61. doi: 10.3171/2014.11.JNS14890.

Baisiwala S, Shlobin NA, Cloney MB, Dahdaleh NS. Impact of Resident Participation During Surgery on Neurosurgical Outcomes: A Meta-Analysis. World Neurosurg. 2020; 142:1-12. doi: 10.1016/j.wneu.2020.05.266.

Buchheit WA, Andrews DW. Proficiency in neurosurgery. Acta Neurochir Suppl. 2001; 78:149-52. doi: 10.1007/978-3-7091-6237-8_27.

Sheehan J, Starke RM, Pouratian N, Litvack Z. Identification of knowledge gaps in neurosurgery using a validated self-assessment examination: differences between general and spinal neurosurgeons. World Neurosurg. 2013; 80(5):e27-31. doi: 10.1016/j.wneu.2012.09.007.

Rabski JE, Saha A, Cusimano MD. Setting standards of performance expected in neurosurgery residency: A study on entrustable professional activities in competency-based medical education. Am J Surg. 2021; 221(2):388-393. doi: 10.1016/j.amjsurg.2020.12.014.

Shaharan S, Neary P. Evaluation of surgical training in the era of simulation. World J Gastrointest Endosc. 2014; 16;6(9):436-47. doi: 10.4253/wjge.v6.i9.436.

Lewis CT, Zeineddine HA, Esquenazi Y. Challenges of Neurosurgery Education During the Coronavirus Disease 2019 (COVID-19) Pandemic: A U.S. Perspective. World Neurosurg. 2020; 138:545-547. doi: 10.1016/j.wneu.2020.04.179.

Gore DC. National survey of surgical morbidity and mortality conferences. Am J Surg. 2006; 191(5):708-14. doi: 10.1016/j.amjsurg.2006.01.029.

Kashiwazaki D, Saito H, Uchino H, Akioka N, Hori E, Shibata T, Tomita T, Akai T, Kuwayama N, Kuroda S. Morbidity and Mortality Conference Can Reduce Avoidable Morbidity in Neurosurgery: Its Educational Effect on Residents and Surgical Safety Outcomes. World Neurosurg. 2020; 133:e348-e355. doi: 10.1016/j.wneu.2019.09.018.

Al-Ahmari AN, Ajlan AM, Bajunaid K, Alotaibi NM, Al-Habib H, Sabbagh AJ, Al-Habib AF, Baeesa SS. Perception of Neurosurgery Residents and Attendings on Online Webinars During COVID-19 Pandemic and Implications on Future Education. World Neurosurg. 2021; 146:e811-e816. doi: 10.1016/j.wneu.2020.11.015.

Tzerefos C, Meling TR, Lafuente J, Fountas KN, Brotis AG, Demetriades AK. The Impact of the Coronavirus Pandemic on European Neurosurgery Trainees. World Neurosurg. 2021; 154:e283-e291. doi: 10.1016/j.wneu.2021.07.019.

Kumar PK, Bhadran B, Harrison G. Neurosurgery videos on online video sharing sites: The next best teacher? Neurol India. 2019; 67(2):505-509. doi: 10.4103/0028-3886.258028.

Knopf JD, Kumar R, Barats M, Klimo P Jr, Boop FA, Michael LM 2nd, Martin JE, Bookland M, Hersh DS. Neurosurgical Operative Videos: An Analysis of an Increasingly Popular Educational Resource. World Neurosurg. 2020; 144:e428-e437. doi: 10.1016/j.wneu.2020.08.187.

Hoz SS, Aktham AA, Al-Sharshahi ZF, Esene IN, Mahoney D, Chaurasia B, Radwan SE, Dolachee AA, Abdulazeez MM, Ramadan AHA, Moscote-Salazar LR, Sadik H. The most recommended neuroanatomy resources for neurosurgeons: an international survey. Surg Neurol Int. 2021; 13;12:11. doi: 10.25259/SNI_501_2020.

Yadav YR, Parihar V, Ratre S, Kher Y, Iqbal M. Microneurosurgical Skills Training. J Neurol Surg A Cent Eur Neurosurg. 2016; 77(2):146-54. doi: 10.1055/s-0034-1376190.

Evgeniou E, Walker H, Gujral S. The Role of Simulation in Microsurgical Training. J Surg Educ. 2018; 75(1):171-181. doi: 10.1016/j.jsurg.2017.06.032.

Estevez ME, Lindgren KA, Bergethon PR. A novel three-dimensional tool for teaching human neuroanatomy. Anat Sci Educ. 2010; 3(6):309-17. doi: 10.1002/ase.186.

Chai DQ, Naunton-Morgan R, Hamdorf J. Fresh frozen cadaver workshops for general surgical training. ANZ J Surg. 2019; 89(11):1428-1431. doi: 10.1111/ans.15258.

Pojskić M, Čustović O, Erwin KH, Dunn IF, Eisenberg M, Gienapp AJ, Arnautović KI. Microscopic and Endoscopic Skull Base Approaches Hands-On Cadaver Course at 30: Historical Vignette. World Neurosurg. 2020; 142:434-440. doi: 10.1016/j.wneu.2020.07.064.

Gragnaniello C, Nader R, van Doormaal T, Kamel M, Voormolen EH, Lasio G, Aboud E, Regli L, Tulleken CA, Al-Mefty O. Skull base tumor model. J Neurosurg. 2010; 113(5):1106-11. doi: 10.3171/2010.3.JNS09513.

de Notaris M, Topczewski T, de Angelis M, Enseñat J, Alobid I, Gondolbleu AM, Soria G, Gonzalez JB, Ferrer E, Prats-Galino A. Anatomic skull base education using advanced neuroimaging techniques. World Neurosurg. 2013; 79(2 Suppl):S16.e9-13. doi: 10.1016/j.wneu.2012.02.027.

Bohl MA, McBryan S, Spear C, Pais D, Preul MC, Wilhelmi B, Yeskel A, Turner JD, Kakarla UK, Nakaji P. Evaluation of a Novel Surgical Skills Training Course: Are Cadavers Still the Gold Standard for Surgical Skills Training? World Neurosurg. 2019; 127:63-71. doi: 10.1016/j.wneu.2019.03.230.

Mishra R, Narayanan MDK, Umana GE, Montemurro N, Chaurasia B, Deora H. Virtual Reality in Neurosurgery: Beyond Neurosurgical Planning. Int J Environ Res Public Health. 2022; 2;19(3):1719. doi: 10.3390/ijerph19031719.

Czyżewski W, Jachimczyk J, Hoffman Z, Szymoniuk M, Litak J, Maciejewski M, Kura K, Rola R, Torres K. Low-Cost Cranioplasty-A Systematic Review of 3D Printing in Medicine. Materials (Basel). 2022; 6;15(14):4731. doi: 10.3390/ma15144731.

Nagassa RG, McMenamin PG, Adams JW, Quayle MR, Rosenfeld JV. Advanced 3D printed model of middle cerebral artery aneurysms for neurosurgery simulation. 3D Print Med. 2019; 1;5(1):11. doi: 10.1186/s41205-019-0048-9.

Zhu J, Wen G, Tang C, Zhong C, Yang J, Ma C. A Practical 3D-Printed Model for Training of Endoscopic and Exoscopic Intracerebral Hematoma Surgery with a Tubular Retractor. J Neurol Surg A Cent Eur Neurosurg. 2020; 81(5):404-411. doi: 10.1055/s-0039-1697023.

Ploch CC, Mansi CSSA, Jayamohan J, Kuhl E. Using 3D Printing to Create Personalized Brain Models for Neurosurgical Training and Preoperative Planning. World Neurosurg. 2016; 90:668-674. doi: 10.1016/j.wneu.2016.02.081.

Weinstock P, Rehder R, Prabhu SP, Forbes PW, Roussin CJ, Cohen AR. Creation of a novel simulator for minimally invasive neurosurgery: fusion of 3D printing and special effects. J Neurosurg Pediatr. 2017; 20(1):1-9. doi: 10.3171/2017.1.PEDS16568.

Mery F, Aranda F, Méndez-Orellana C, Caro I, Pesenti J, Torres J, Rojas R, Villanueva P, Germano I. Reusable Low-Cost 3D Training Model for Aneurysm Clipping. World Neurosurg. 2021; 147:29-36. doi: 10.1016/j.wneu.2020.11.136.

Joseph FJ, Weber S, Raabe A, Bervini D. Neurosurgical simulator for training aneurysm microsurgery-a user suitability study involving neurosurgeons and residents. Acta Neurochir (Wien). 2020; 162(10):2313-2321. doi: 10.1007/s00701-020-04522-3.

Thiong'o GM, Bernstein M, Drake JM. 3D printing in neurosurgery education: a review. 3D Print Med. 2021; 23;7(1):9. doi: 10.1186/s41205-021-00099-4.

Karuppiah R, Munusamy T, Bahuri NFA, Waran V. The utilisation of 3D printing in paediatric neurosurgery. Childs Nerv Syst. 2021; 37(5):1479-1484. doi: 10.1007/s00381-021-05123-w.

Blohm JE, Salinas PA, Avila MJ, Barber SR, Weinand ME, Dumont TM. Three-Dimensional Printing in Neurosurgery Residency Training: A Systematic Review of the Literature. World Neurosurg. 2022; 161:111-122. doi: 10.1016/j.wneu.2021.10.069.

Scott H, Griffin C, Coggins W, Elberson B, Abdeldayem M, Virmani T, Larson-Prior LJ, Petersen E. Virtual Reality in the Neurosciences: Current Practice and Future Directions. Front Surg. 2022; 18;8:807195. doi: 10.3389/fsurg.2021.807195.

Bruening DM, Truckenmueller P, Stein C, Fuellhase J, Vajkoczy P, Picht T, Acker G. 360° 3D virtual reality operative video for the training of residents in neurosurgery. Neurosurg Focus. 2022; 53(2):E4. doi: 10.3171/2022.5.FOCUS2261.

Bernard F, Gallet C, Fournier HD, Laccoureye L, Roche PH, Troude L. Toward the development of 3-dimensional virtual reality video tutorials in the French neurosurgical residency program. Example of the combined petrosal approach in the French College of Neurosurgery. Neurochirurgie. 2019; 65(4):152-157. doi: 10.1016/j.neuchi.2019.04.004.

Shao X, Yuan Q, Qian D, Ye Z, Chen G, le Zhuang K, Jiang X, Jin Y, Qiang D. Virtual reality technology for teaching neurosurgery of skull base tumor. BMC Med Educ. 2020; 3;20(1):3. doi: 10.1186/s12909-019-1911-5.

Greuter L, De Rosa A, Cattin P, Croci DM, Soleman J, Guzman R. Randomized study comparing 3D virtual reality and conventional 2D on-screen teaching of cerebrovascular anatomy. Neurosurg Focus. 2021; 51(2):E18. doi: 10.3171/2021.5.FOCUS21212.

Perin A, Gambatesa E, Galbiati TF, Fanizzi C, Carone G, Rui CB, Ayadi R, Saladino A, Mattei L, Legninda Sop FY, Caggiano C, Prada FU, Acerbi F, Ferroli P, Meling TR, DiMeco F. The "STARS-CASCADE" Study: Virtual Reality Simulation as a New Training Approach in Vascular Neurosurgery. World Neurosurg. 2021; 154:e130-e146. doi: 10.1016/j.wneu.2021.06.145.

Cagiltay NE, Ozcelik E, Isikay I, Hanalioglu S, Suslu AE, Yucel T, Berker M. The Effect of Training, Used-Hand, and Experience on Endoscopic Surgery Skills in an Educational Computer-Based Simulation Environment (ECE) for Endoneurosurgery Training. Surg Innov. 2019; 26(6):725-737. doi: 10.1177/1553350619861563.

Chan J, Pangal DJ, Cardinal T, Kugener G, Zhu Y, Roshannai A, Markarian N, Sinha A, Anandkumar A, Hung A, Zada G, Donoho DA. A systematic review of virtual reality for the assessment of technical skills in neurosurgery. Neurosurg Focus. 2021; 51(2):E15. doi: 10.3171/2021.5.FOCUS21210.

Davids J, Manivannan S, Darzi A, Giannarou S, Ashrafian H, Marcus HJ. Simulation for skills training in neurosurgery: a systematic review, meta-analysis, and analysis of progressive scholarly acceptance. Neurosurg Rev. 2021; 44(4):1853-1867. doi: 10.1007/s10143-020-01378-0.

Roethe AL, Rösler J, Misch M, Vajkoczy P, Picht T. Augmented reality visualization in brain lesions: a prospective randomized controlled evaluation of its potential and current limitations in navigated microneurosurgery. Acta Neurochir (Wien). 2022; 164(1):3-14. doi: 10.1007/s00701-021-05045-1.

Haemmerli J, Davidovic A, Meling TR, Chavaz L, Schaller K, Bijlenga P. Evaluation of the precision of operative augmented reality compared to standard neuronavigation using a 3D-printed skull. Neurosurg Focus. 2021; 50(1):E17. doi: 10.3171/2020.10.FOCUS20789.

Mikhail M, Mithani K, Ibrahim GM. Presurgical and Intraoperative Augmented Reality in Neuro-Oncologic Surgery: Clinical Experiences and Limitations. World Neurosurg. 2019; 128:268-276. doi: 10.1016/j.wneu.2019.04.256.

Petrone S, Cofano F, Nicolosi F, Spena G, Moschino M, Di Perna G, Lavorato A, Lanotte MM, Garbossa D. Virtual-Augmented Reality and Life-Like Neurosurgical Simulator for Training: First Evaluation of a Hands-On Experience for Residents. Front Surg. 2022; 19;9:862948. doi: 10.3389/fsurg.2022.862948.

Si WX, Liao XY, Qian YL, Sun HT, Chen XD, Wang Q, Heng PA. Assessing performance of augmented reality-based neurosurgical training. Vis Comput Ind Biomed Art. 2019; 3;2(1):6. doi: 10.1186/s42492-019-0015-8.

Cho J, Rahimpour S, Cutler A, Goodwin CR, Lad SP, Codd P. Enhancing Reality: A Systematic Review of Augmented Reality in Neuronavigation and Education. World Neurosurg. 2020; 139:186-195. doi: 10.1016/j.wneu.2020.04.043.

Liu PR, Lu L, Zhang JY, Huo TT, Liu SX, Ye ZW. Application of Artificial Intelligence in Medicine: An Overview. Curr Med Sci. 2021; 41(6):1105-1115. doi: 10.1007/s11596-021-2474-3.

Winkler-Schwartz A, Yilmaz R, Mirchi N, Bissonnette V, Ledwos N, Siyar S, Azarnoush H, Karlik B, Del Maestro R. Machine Learning Identification of Surgical and Operative Factors Associated With Surgical Expertise in Virtual Reality Simulation. JAMA Netw Open. 2019; 2;2(8):e198363. doi: 10.1001/jamanetworkopen.2019.8363.

Siyar S, Azarnoush H, Rashidi S, Winkler-Schwartz A, Bissonnette V, Ponnudurai N, Del Maestro RF. Machine learning distinguishes neurosurgical skill levels in a virtual reality tumor resection task. Med Biol Eng Comput. 2020; 58(6):1357-1367. doi: 10.1007/s11517-020-02155-3.

Bissonnette V, Mirchi N, Ledwos N, Alsidieri G, Winkler-Schwartz A, Del Maestro RF; Neurosurgical Simulation & Artificial Intelligence Learning Centre. Artificial Intelligence Distinguishes Surgical Training Levels in a Virtual Reality Spinal Task. J Bone Joint Surg Am. 2019; 4;101(23):e127. doi: 10.2106/JBJS.18.01197.

Published
2025-12-24
Citations
How to Cite
Dawid Woszczyk, Martyna Różańska, Marta Brygida Szczygieł, & Marcin Płonka. (2025). TRAINING METHODS IN NEUROSURGERY - WHAT SOLUTIONS XXI CENTURY CAN OFFER?. International Journal of Innovative Technologies in Social Science, 2(4(48). https://doi.org/10.31435/ijitss.4(48).2025.4173