THE NEW FACE OF AN OLD TOXIN: BOTULINUM TOXIN IN THE PREVEN-TION OF POST-OPERATIVE HEART RHYTHM DISORDERS
Abstract
Botulinum toxin, previously used mainly in neurology and aesthetic medicine, is increasingly finding application in new fields, including cardiology. Its ability to selectively and temporarily block cholinergic conduction makes it a promising tool for modulating the activity of the autonomic nervous system, which is important in the prevention of postoperative atrial fibrillation (POAF). Atrial fibrillation is one of the most common postoperative complications in cardiac surgery, significantly affecting the course of recovery and patient prognosis. An imbalance between sympathetic and parasympathetic regulation of the heart rhythm plays a significant role in the pathogenesis of this disorder. This paper reviews the current state of knowledge on the therapeutic potential of botulinum toxin in the prevention of POAF. The data indicate that the use of botulinum toxin may lead to a reduction in the incidence of postoperative arrhythmias in selected patient groups. The need for further research to determine the optimal treatment regimen and identify the patient population most likely to benefit from this type of therapy was also emphasised.
References
Padda, I. S., & Tadi, P. (2025). Botulinum toxin. In StatPearls [Internet]. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/
Wen, J., Nadora, D., Ansari, U., Syed, B., Shehabat, M., Razick, D. I., Razick, A. A., & Rajagopal, T. (2024). Exploring new and potential indications for botulinum toxin treatment: An updated literature review. Cureus, 16(12), e75549. https://doi.org/10.7759/cureus.75549
Rempel, L., Malik, R. N., Shackleton, C., Calderón-Juárez, M., Sachdeva, R., & Krassioukov, A. V. (2024). From toxin to treatment: A narrative review on the use of botulinum toxin for autonomic dysfunction. Toxins, 16(2), 96. https://doi.org/10.3390/toxins16020096
Scott, A. B., Fahn, S., & Brin, M. F. (2023). Treatment of strabismus and blepharospasm with Botox (onabotulinumtoxinA): Development, insights, and impact. Medicine, 102(Suppl. 1), e32374. https://doi.org/10.1097/MD.0000000000032374
Yoelin, S., & Hooper, D. (2024). New and future developments in neurotoxins. Dermatologic Surgery, 50(9 Suppl.), S112–S116. https://doi.org/10.1097/DSS.0000000000004346
Rempel, L., Malik, R. N., Shackleton, C., Calderón-Juárez, M., Sachdeva, R., & Krassioukov, A. V. (2024). From toxin to treatment: A narrative review on the use of botulinum toxin for autonomic dysfunction. Toxins, 16(2), 96. https://doi.org/10.3390/toxins16020096
Ayoub, N. (2025). Botulinum toxin therapy: A comprehensive review on clinical and pharmacological insights. Journal of Clinical Medicine, 14(6), 2021. https://doi.org/10.3390/jcm14062021
Kumar, R., & Singh, B. R. (2025). Botulinum toxin: A comprehensive review of its molecular architecture and mechanistic action. International Journal of Molecular Sciences, 26(2), 777. https://doi.org/10.3390/ijms26020777
Restani, L., Giribaldi, F., Manich, M., Bercsenyi, K., Menendez, G., Rossetto, O., Caleo, M., & Schiavo, G. (2012). Botulinum neurotoxins A and E undergo retrograde axonal transport in primary motor neurons. PLoS Pathogens, 8(12), e1003087. https://doi.org/10.1371/journal.ppat.1003087
Gill, R., Banky, M., Yang, Z., Medina Mena, P., Woo, C. C. A., Bryant, A., Olver, J., Moore, E., & Williams, G. (2024). The effect of botulinum neurotoxin-A (BoNT-A) on muscle strength in adult-onset neurological conditions with focal muscle spasticity: A systematic review. Toxins, 16(8), 347. https://doi.org/10.3390/toxins16080347
Coté, T. R., Mohan, A. K., Polder, J. A., Walton, M. K., & Braun, M. M. (2005). Botulinum toxin type A injections: Adverse events reported to the U.S. Food and Drug Administration in therapeutic and cosmetic cases. Journal of the American Academy of Dermatology, 53(3), 407–415. https://doi.org/10.1016/j.jaad.2005.05.010
Jankovic, J. (2004). Botulinum toxin in clinical practice. Journal of Neurology, Neurosurgery & Psychiatry, 75(7), 951–957. https://doi.org/10.1136/jnnp.2003.034702
Naumann, M., & Jankovic, J. (2004). Safety of botulinum toxin type A: A systematic review and meta-analysis. Current Medical Research and Opinion, 20(7), 981–990. https://doi.org/10.1185/030079904125003962
U.S. Food and Drug Administration. (2009). FDA requires boxed warning and develops REMS for all botulinum toxin products. https://www.citizen.org/wp-content/uploads/FDA_April-2009.-Response-to-Public-Citizen-petition.pdf
Shah, S., Chahil, V., Battisha, A., Haq, S., & Kalra, D. K. (2024). Postoperative atrial fibrillation: A review. Biomedicines, 12(9), 1968. https://doi.org/10.3390/biomedicines12091968
Avazzadeh, S., McBride, S., O’Brien, B., Coffey, K., Elahi, A., O’Halloran, M., Soo, A., & Quinlan, L. R. (2020). Ganglionated plexi ablation for the treatment of atrial fibrillation. Journal of Clinical Medicine, 9(10), 3081. https://doi.org/10.3390/jcm9103081
Wiszniewski, K., Grudniewska, A., Szabłowska-Gadomska, I., Pilichowska-Paszkiet, E., Zaborska, B., Zgliczyński, W., Dudek, P., Bik, W., Sota, M., & Mrozikiewicz-Rakowska, B. (2025). Epicardial adipose tissue—A novel therapeutic target in obesity cardiomyopathy. International Journal of Molecular Sciences, 26(16), 7963. https://doi.org/10.3390/ijms26167963
Conte, M., Petraglia, L., Cabaro, S., Valerio, V., Poggio, P., Pilato, E., Attena, E., Russo, V., Ferro, A., Formisano, P., Leosco, D., & Parisi, V. (2022). Epicardial adipose tissue and cardiac arrhythmias: Focus on atrial fibrillation. Frontiers in Cardiovascular Medicine, 9, 932262. https://doi.org/10.3389/fcvm.2022.932262
Willar, B., Tran, K. V., & Fitzgibbons, T. P. (2023). Epicardial adipocytes in the pathogenesis of atrial fibrillation: An update on basic and translational studies. Frontiers in Endocrinology, 14, 1154824. https://doi.org/10.3389/fendo.2023.1154824
Stavrakis, S., & Po, S. (2017). Ganglionated plexi ablation: Physiology and clinical applications. Arrhythmia & Electrophysiology Review, 6(4), 186–190. https://doi.org/10.15420/aer2017.26.1
Kusayama, T., Wan, J., Yuan, Y., & Chen, P.-S. (2021). Neural mechanisms and therapeutic opportunities for atrial fibrillation. Methodist DeBakey Cardiovascular Journal, 17(1), 43–47. https://doi.org/10.14797/FVDN2224
Lazzerini, P. E., Abbate, A., Boutjdir, M., & Capecchi, P. L. (2023). Fir(e)ing the rhythm: Inflammatory cytokines and cardiac arrhythmias. JACC: Basic to Translational Science, 8(6), 619–638. https://doi.org/10.1016/j.jacbts.2022.12.008
Jagadish, P. S., Kirolos, I., Khare, S., Rawal, A., Lin, V., & Khouzam, R. N. (2019). Post-operative atrial fibrillation: Should we anticoagulate? Annals of Translational Medicine, 7(17), 407. https://doi.org/10.21037/atm.2019.07.10
Guldberg, E., Diederichsen, S. Z., Haugan, K. J., Brandes, A., Graff, C., & Krieger, D. (2024). Epicardial adipose tissue and subclinical incident atrial fibrillation as detected by continuous monitoring: A cardiac magnetic resonance imaging study. International Journal of Cardiovascular Imaging, 40, 591–599. https://doi.org/10.1007/s10554-023-03029-z
Carbone, A. M., Del Calvo, G., Nagliya, D., Sharma, K., & Lymperopoulos, A. (2022). Autonomic nervous system regulation of epicardial adipose tissue: Potential roles for regulator of G protein signaling-4. Current Issues in Molecular Biology, 44(12), 6093–6103. https://doi.org/10.3390/cimb44120415
Iacobellis, G. (2022). Epicardial adipose tissue in contemporary cardiology. Nature Reviews Cardiology, 19, 593–606. https://doi.org/10.1038/s41569-022-00679-9
Chahine, Y., Macheret, F., Ordovas, K., Kim, J., Boyle, P. M., & Akoum, N. (2022). MRI-quantified left atrial epicardial adipose tissue predicts atrial fibrillation recurrence following catheter ablation. Frontiers in Cardiovascular Medicine, 9, 1045742. https://doi.org/10.3389/fcvm.2022.1045742
Guénancia, C., Pujos, C., et al. (2015). Incidence and predictors of new-onset silent atrial fibrillation after coronary artery bypass grafting: A prospective study with Holter monitoring. International Journal of Cardiology, 179, 77–82.
Gaudino, M., Di Franco, A., Rong, L. Q., Piccini, J., & Mack, M. (2023). Postoperative atrial fibrillation: From mechanisms to treatment. European Heart Journal, 44(12), 1020–1039. https://doi.org/10.1093/eurheartj/ehad019
Pokushalov, E., Kozlov, B., Romanov, A., Strelnikov, A., Bayramova, S., Sergeevichev, D., Bogachev-Prokophiev, A., & Steinberg, J. S. (2015). Long-term suppression of atrial fibrillation by botulinum toxin injection into epicardial fat pads in patients undergoing cardiac surgery: One-year follow-up of a randomized pilot study. Circulation: Arrhythmia and Electrophysiology, 8(6), 1334–1341. https://doi.org/10.1161/CIRCEP.115.003199
Romanov, A., Pokushalov, E., Ponomarev, D., Bayramova, S., Shabanov, V., Losik, D., et al. (2019). Long-term suppression of atrial fibrillation by botulinum toxin injection into epicardial fat pads in patients undergoing cardiac surgery: Three-year follow-up of a randomized study. Heart Rhythm, 16(2), 172–177. https://doi.org/10.1016/j.hrthm.2018.08.019
Piccini, J. P., Ahlsson, A., Dorian, P., Gillinov, M. A., Kowey, P. R., & Mack, M. J. (2022). Design and rationale of a phase 2 study of neurotoxin (botulinum toxin type A) for the prevention of post-operative atrial fibrillation—the NOVA study. American Heart Journal, 246, 86–95. https://doi.org/10.1016/j.ahj.2021.10.007
Schaffer, R. (2022, November 17). Botulinum toxin injection does not prevent postoperative AF: NOVA. Medscape Medical News. https://www.medscape.com/viewarticle/984429
U.S. National Library of Medicine. (2019). Prevention of atrial fibrillation by botulinum toxin injections (BOTAF) (ClinicalTrials.gov Identifier: NCT04075981). https://www.centerwatch.com/clinical-trials/listings/NCT04075981
Saljić, A., Hansen, M. E. H., & Dobrev, D. (2023). Botulinum toxin for prevention of post-operative atrial fibrillation. Naunyn-Schmiedeberg’s Archives of Pharmacology, 396(3), 385–388. https://doi.org/10.1007/s00210-023-02402-y
Copyright (c) 2025 Anna Kaźmierska, Maciej Kaźmierska

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

