ARTIFICIAL SWEETENERS AND BODY WEIGHT: A CRITICAL REVIEW OF CURRENT EVIDENCE

Keywords: Artificial Sweeteners, Body Weight, Metabolic Effect, Insulin, Aspartame, Sucralose, Obesity

Abstract

Artificial sweeteners (AS), or non-nutritive sweeteners, are widely promoted as sugar substitutes for weight management. Their use is based on the assumption that they lower caloric intake and improve metabolic outcomes, yet the evidence remains conflicting. This review synthesizes findings from randomized controlled trials (RCTs), preclinical models, observational studies, and mechanistic research.

Meta-analyses of RCTs demonstrate modest benefits, with mean reductions of −0.8 kg in body weight and −0.24 kg/m² in BMI. These effects are most evident in short-term interventions, while long-term trials generally report no sustained advantage over sugar or placebo. Preclinical data are heterogeneous: chronic AS exposure in obesity-prone rodents often promotes weight gain and metabolic dysregulation, whereas benefits are observed when AS replace sucrose in energy-restricted conditions.

Epidemiological studies associate AS intake with increased risks of obesity (OR ≈ 1.5), type 2 diabetes (OR ≈ 3.7), and hypertension (OR ≈ 1.5). Although residual confounding and reverse causality cannot be excluded, these findings raise concerns about adverse long-term outcomes. Mechanistic studies suggest that AS may alter gut microbiota, impair satiety signaling, and promote compensatory feeding, with additional effects on insulin sensitivity and reward pathways.

In summary, AS confer limited short-term benefits and uncertain long-term efficacy in weight control. Concerns raised by observational and mechanistic data support the World Health Organization’s recommendation against their routine use. Future research should clarify sweetener-specific effects, interindividual variability, and long-term outcomes to inform dietary guidelines and public health strategies.

References

Azad, M. B., Abou-Setta, A. M., Chauhan, B. F., Rabbani, R., Lys, J., Copstein, L., Mann, A., Jeyaraman, M. M., Reid, A. E., Fiander, M., MacKay, D. S., McGavock, J., Wicklow, B., & Zarychanski, R. (2017). Nonnutritive sweeteners and cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. Canadian Medical Association Journal, 189(28), E929–E939. https://doi.org/10.1503/cmaj.161390

Basson, A. R., Rodriguez-Palacios, A., & Cominelli, F. (2021). Artificial Sweeteners: History and New Concepts on Inflammation. Frontiers in Nutrition, 8, 746247, https://doi.org/10.3389/fnut.2021.746247

Dhingra, R., Sullivan, L., Jacques, P. F., Wang, T. J., Fox, C. S., Meigs, J. B., D’Agostino, R. B., Gaziano, J. M., & Vasan, R. S. (2007). Soft Drink Consumption and Risk of Developing Cardiometabolic Risk Factors and the Metabolic Syndrome in Middle-Aged Adults in the Community. Circulation, 116(5), 480–488. https://doi.org/10.1161/CIRCULATIONAHA.107.689935

EFSA Panel on Food Additives and Flavourings (FAF), Castle, L., Andreassen, M., Aquilina, G., Bastos, M. L., Boon, P., Fallico, B., FitzGerald, R., Frutos Fernandez, M. J., Grasl‐Kraupp, B., Gundert‐Remy, U., Gürtler, R., Houdeau, E., Kurek, M., Louro, H., Morales, P., Passamonti, S., Batke, M., Bruzell, E., … Lodi, F. (2025). Re‐evaluation of acesulfame K (E 950) as food additive. EFSA Journal, 23(4). https://doi.org/10.2903/j.efsa.2025.9317

Fagherazzi, G., Vilier, A., Saes Sartorelli, D., Lajous, M., Balkau, B., & Clavel-Chapelon, F. (2013). Consumption of artificially and sugar-sweetened beverages and incident type 2 diabetes in the Etude Epidémiologique auprès des femmes de la Mutuelle Générale de l’Education Nationale–European Prospective Investigation into Cancer and Nutrition cohort. The American Journal of Clinical Nutrition, 97(3), 517–523. https://doi.org/10.3945/ajcn.112.050997

Fowler, S. P. G. (2016a). Low-calorie sweetener use and energy balance: Results from experimental studies in animals, and large-scale prospective studies in humans. Physiology & Behavior, 164, 517–523. https://doi.org/10.1016/j.physbeh.2016.04.047

Fowler, S. P. G. (2016b). Low-calorie sweetener use and energy balance: Results from experimental studies in animals, and large-scale prospective studies in humans. Physiology & Behavior, 164, 517–523. https://doi.org/10.1016/j.physbeh.2016.04.047

Gerhardsson, P., Schwandt, A., Witsch, M., Kordonouri, O., Svensson, J., Forsander, G., Battelino, T., Veeze, H., Danne, T., & on Behalf of the SWEET Study Group. (2021). The SWEET Project 10-Year Benchmarking in 19 Countries Worldwide Is Associated with Improved HbA1c and Increased Use of Diabetes Technology in Youth with Type 1 Diabetes. Diabetes Technology & Therapeutics, 23(7), 491–499. https://doi.org/10.1089/dia.2020.0618

Ghusn, W., Naik, R., & Yibrin, M. (2023). The Impact of Artificial Sweeteners on Human Health and Cancer Association: A Comprehensive Clinical Review. Cureus. https://doi.org/10.7759/cureus.51299

Gibbons, C., Beaulieu, K., Almiron-Roig, E., Navas-Carretero, S., Martínez, J. A., O’Hara, B., O’Connor, D., Nazare, J.-A., Le Bail, A., Rannou, C., Hardman, C., Wilton, M., Kjølbæk, L., Scott, C., Moshoyiannis, H., Raben, A., Harrold, J. A., Halford, J. C. G., & Finlayson, G. (2024). Acute and two-week effects of neotame, stevia rebaudioside M and sucrose-sweetened biscuits on postprandial appetite and endocrine response in adults with overweight/obesity—A randomised crossover trial from the SWEET consortium. eBioMedicine, 102, 105005. https://doi.org/10.1016/j.ebiom.2024.105005

Hamedi-Kalajahi, F., Asemani, S., Prabahar, K., Jourabchi-Ghadim, N., & Ostadrahimi, A. (2024). The effects of artificial sweeteners on body weight, body fat, and energy intake: A meta-analysis of meta-analyses. BioSocial Health Journal, 1(2), 74–83. https://doi.org/10.34172/bshj.22

Heo, G. Y., Koh, H. B., Park, J. T., Han, S. H., Yoo, T.-H., Kang, S.-W., & Kim, H. W. (2024). Sweetened Beverage Intake and Incident Chronic Kidney Disease in the UK Biobank Study. JAMA Network Open, 7(2), e2356885. https://doi.org/10.1001/jamanetworkopen.2023.56885

Higgins, K. A., & Mattes, R. D. (2019a). A randomized controlled trial contrasting the effects of 4 low-calorie sweeteners and sucrose on body weight in adults with overweight or obesity. The American Journal of Clinical Nutrition, 109(5), 1288–1301. https://doi.org/10.1093/ajcn/nqy381

Higgins, K. A., & Mattes, R. D. (2019b). A randomized controlled trial contrasting the effects of 4 low-calorie sweeteners and sucrose on body weight in adults with overweight or obesity. The American Journal of Clinical Nutrition, 109(5), 1288–1301. https://doi.org/10.1093/ajcn/nqy381

Hunter, S. R., Reister, E. J., Cheon, E., & Mattes, R. D. (2019). Low Calorie Sweeteners Differ in Their Physiological Effects in Humans. Nutrients, 11(11), 2717. https://doi.org/10.3390/nu11112717

Imamura, F., O’Connor, L., Ye, Z., Mursu, J., Hayashino, Y., Bhupathiraju, S. N., & Forouhi, N. G. (2015). Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: Systematic review, meta-analysis, and estimation of population attributable fraction. BMJ, h3576. https://doi.org/10.1136/bmj.h3576

Kan, J., Wang, D., Chang, Y., Jiang, Z., Jiang, X., Xie, H., Jia, X., Chen, M., & Gu, Y. (2024). Associations of artificial sweetener intake with cardiometabolic disorders and mortality: A population-based study. British Journal of Nutrition, 132(8), 1065–1072. https://doi.org/10.1017/S000711452400223X

M, M., & Vellapandian, C. (2024). Exploring the Long-Term Effect of Artificial Sweeteners on Metabolic Health. Cureus. https://doi.org/10.7759/cureus.70043

Miller, P. E., & Perez, V. (2014a). Low-calorie sweeteners and body weight and composition: A meta-analysis of randomized controlled trials and prospective cohort studies , ,. The American Journal of Clinical Nutrition, 100(3), 765–777. https://doi.org/10.3945/ajcn.113.082826

Miller, P. E., & Perez, V. (2014b). Low-calorie sweeteners and body weight and composition: A meta-analysis of randomized controlled trials and prospective cohort studies , ,. The American Journal of Clinical Nutrition, 100(3), 765–777. https://doi.org/10.3945/ajcn.113.082826

Okunogbe, A., Nugent, R., Spencer, G., Powis, J., Ralston, J., & Wilding, J. (2022). Economic impacts of overweight and obesity: Current and future estimates for 161 countries. BMJ Global Health, 7(9), e009773. https://doi.org/10.1136/bmjgh-2022-009773

Palmnäs, M. S. A., Cowan, T. E., Bomhof, M. R., Su, J., Reimer, R. A., Vogel, H. J., Hittel, D. S., & Shearer, J. (2014). Low-Dose Aspartame Consumption Differentially Affects Gut Microbiota-Host Metabolic Interactions in the Diet-Induced Obese Rat. PLoS ONE, 9(10), e109841. https://doi.org/10.1371/journal.pone.0109841

Pang, M. D., Goossens, G. H., & Blaak, E. E. (2021a). The Impact of Artificial Sweeteners on Body Weight Control and Glucose Homeostasis. Frontiers in Nutrition, 7, 598340. https://doi.org/10.3389/fnut.2020.598340

Pang, M. D., Goossens, G. H., & Blaak, E. E. (2021b). The Impact of Artificial Sweeteners on Body Weight Control and Glucose Homeostasis. Frontiers in Nutrition, 7, 598340. https://doi.org/10.3389/fnut.2020.598340

Pepino, M. Y., Tiemann, C. D., Patterson, B. W., Wice, B. M., & Klein, S. (2013). Sucralose Affects Glycemic and Hormonal Responses to an Oral Glucose Load. Diabetes Care, 36(9), 2530–2535. https://doi.org/10.2337/dc12-2221

Qin, P., Li, Q., Zhao, Y., Chen, Q., Sun, X., Liu, Y., Li, H., Wang, T., Chen, X., Zhou, Q., Guo, C., Zhang, D., Tian, G., Liu, D., Qie, R., Han, M., Huang, S., Wu, X., Li, Y., … Zhang, M. (2020). Sugar and artificially sweetened beverages and risk of obesity, type 2 diabetes mellitus, hypertension, and all-cause mortality: A dose–response meta-analysis of prospective cohort studies. European Journal of Epidemiology, 35(7), 655–671. https://doi.org/10.1007/s10654-020-00655-y

Ragi, M.-E. E., El-Haber, R., El-Masri, F., & Obeid, O. A. (2022). The effect of aspartame and sucralose intake on body weight measures and blood metabolites: Role of their form (solid and/or liquid) of ingestion. British Journal of Nutrition, 128(2), 352–360. https://doi.org/10.1017/S0007114521003238

Ramos-García, M., Ble-Castillo, J. L., García-Vázquez, C., Tovilla-Zárate, C. A., Juárez-Rojop, I. E., Olvera-Hernández, V., Genis-Mendoza, A. D., Córdova-Uscanga, R., Álvarez-González, C. A., & Díaz-Zagoya, J. C. (2021). Effects of Non-Nutritive Sweeteners on Energy Intake, Body Weight and Postprandial Glycemia in Healthy and with Altered Glycemic Response Rats. Foods, 10(5), 958. https://doi.org/10.3390/foods10050958

Rathaus, M., Azem, L., Livne, R., Ron, S., Ron, I., Hadar, R., Efroni, G., Amir, A., Braun, T., Haberman, Y., & Tirosh, A. (2024). Long-term metabolic effects of non-nutritive sweeteners. Molecular Metabolism, 88, 101985. https://doi.org/10.1016/j.molmet.2024.101985

Romo-Romo, A., Aguilar-Salinas, C. A., Brito-Córdova, G. X., Gómez-Díaz, R. A., & Almeda-Valdes, P. (2018). Sucralose decreases insulin sensitivity in healthy subjects: A randomized controlled trial. The American Journal of Clinical Nutrition, 108(3), 485–491. https://doi.org/10.1093/ajcn/nqy152

Steffen, B. T., Jacobs, D. R., Yi, S.-Y., Lees, S. J., Shikany, J. M., Terry, J. G., Lewis, C. E., Carr, J. J., Zhou, X., & Steffen, L. M. (2023). Long-term aspartame and saccharin intakes are related to greater volumes of visceral, intermuscular, and subcutaneous adipose tissue: The CARDIA study. International Journal of Obesity, 47(10), 939–947. https://doi.org/10.1038/s41366-023-01336-y

Steinert, R. E., Frey, F., Töpfer, A., Drewe, J., & Beglinger, C. (2011). Effects of carbohydrate sugars and artificial sweeteners on appetite and the secretion of gastrointestinal satiety peptides. British Journal of Nutrition, 105(9), 1320–1328. https://doi.org/10.1017/S000711451000512X

Suez, J., Cohen, Y., Valdés-Mas, R., Mor, U., Dori-Bachash, M., Federici, S., Zmora, N., Leshem, A., Heinemann, M., Linevsky, R., Zur, M., Ben-Zeev Brik, R., Bukimer, A., Eliyahu-Miller, S., Metz, A., Fischbein, R., Sharov, O., Malitsky, S., Itkin, M., … Elinav, E. (2022). Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell, 185(18), 3307-3328.e19. https://doi.org/10.1016/j.cell.2022.07.016

Suez, J., Korem, T., Zeevi, D., Zilberman-Schapira, G., Thaiss, C. A., Maza, O., Israeli, D., Zmora, N., Gilad, S., Weinberger, A., Kuperman, Y., Harmelin, A., Kolodkin-Gal, I., Shapiro, H., Halpern, Z., Segal, E., & Elinav, E. (2014). Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature, 514(7521), 181–186. https://doi.org/10.1038/nature13793

Swithers, S. E. (2013). Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends in Endocrinology & Metabolism, 24(9), 431–441. https://doi.org/10.1016/j.tem.2013.05.005

Tsai, M.-J., Li, C.-H., Wu, H.-T., Kuo, H.-Y., Wang, C.-T., Pai, H.-L., Chang, C.-J., & Ou, H.-Y. (2023). Long-Term Consumption of Sucralose Induces Hepatic Insulin Resistance through an Extracellular Signal-Regulated Kinase 1/2-Dependent Pathway. Nutrients, 15(12), 2814. https://doi.org/10.3390/nu15122814

Wang, Q.-P., Lin, Y. Q., Zhang, L., Wilson, Y. A., Oyston, L. J., Cotterell, J., Qi, Y., Khuong, T. M., Bakhshi, N., Planchenault, Y., Browman, D. T., Lau, M. T., Cole, T. A., Wong, A. C. N., Simpson, S. J., Cole, A. R., Penninger, J. M., Herzog, H., & Neely, G. G. (2016). Sucralose Promotes Food Intake through NPY and a Neuronal Fasting Response. Cell Metabolism, 24(1), 75–90. https://doi.org/10.1016/j.cmet.2016.06.010

WHO. (2023). WHO Guidelines Review Committee, Nutrition and Food Safety (NFS).

WHO. (2025, May 7). https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.

Wu, W., Sui, W., Chen, S., Guo, Z., Jing, X., Wang, X., Wang, Q., Yu, X., Xiong, W., Ji, J., Yang, L., Zhang, Y., Jiang, W., Yu, G., Liu, S., Tao, W., Zhao, C., Zhang, Y., Chen, Y., … Cao, Y. (2025). Sweetener aspartame aggravates atherosclerosis through insulin-triggered inflammation. Cell Metabolism, 37(5), 1075-1088.e7. https://doi.org/10.1016/j.cmet.2025.01.006

Zare, M., Zeinalabedini, M., Ebrahimpour‐Koujan, S., & Azadbakht, L. (2025). Effects of stevia consumption on appetite in adults: A systematic review and dose–response meta‐analysis of randomized controlled trials. Obesity Reviews, 26(6), e13902. https://doi.org/10.1111/obr.13902

Published
2025-12-17
Citations
How to Cite
Lidia Jurczenko, Ewa Szczęsna, Marta Miejska-Kamińska, & Izabella Sośniak. (2025). ARTIFICIAL SWEETENERS AND BODY WEIGHT: A CRITICAL REVIEW OF CURRENT EVIDENCE. International Journal of Innovative Technologies in Social Science, 4(4(48). https://doi.org/10.31435/ijitss.4(48).2025.4026