PROPOLIS SUPPLEMENTATION - EFFECTS ON PHYSICAL ACTIVITY, SKIN, BONE HEALTH, AND CARDIOVASCULAR FUNCTION: A SYSTEMATIC REVIEW
Abstract
Introduction: In recent years, many sports supplements have incorporated several natural ingredients. One notable example is propolis, a bee-derived substance rich in bioactive compounds such as flavonoids, phenolic acids, and vitamins. Research indicates that bee glue has several therapeutic properties, including anti-inflammatory, antioxidant, and immunomodulatory effects. These mechanisms support wound healing, strengthen the immune system, combat respiratory infections, improve both recovery and physical capacity, all of which may collectively lead to enhanced athletic performance.
Aim of the study: This study aims to provide a comprehensive analysis of propolis properties. Through a detailed discussion and review of the evidence supporting the beneficial effects of propolis supplementation on the skin, as well as the muscular, skeletal, and cardiovascular systems.
Material and method: This article presents the current state of knowledge about the effects of propolis supplementation. A literature review was gathered using PubMed, ScienceDirect, and Google Scholar platforms, with a focus on papers from the last five years. The search included the keywords ‘propolis’, ‘antioxidant activity’, ‘anti-inflammatory’, ‘exercise’, ‘skin regeneration’, and ‘cardiovascular function’.
Results: Literature review revealed that propolis emerges as a multi-target phytocomplex that attenuates inflammation, augments antioxidant defenses, and favorably modulates vascular and musculoskeletal function across pre-clinical models. Synergistic effects with exercise, biomaterial carriers, and microbiota-directed strategies underscore opportunities for combination interventions.
References
Abd El-Hakam, F. Z., Abo Laban, G., Badr El-Din, S., Abd El-Hamid, H., & Farouk, M. H. (2022). Apitherapy combination improvement of blood pressure, cardiovascular protection, and antioxidant and anti-inflammatory responses in a dexamethasone-model hypertensive rat. Scientific Reports, 12, Article 20765. https://doi.org/10.1038/s41598-022-24727-z
Acikan, I., Yaman, F., Dundar, S., Ozercan, I. H., & Atilgan, S. S. (2022). Protective effects of caffeic acid phenethyl ester (CAPE) and thymoquinone against cigarette smoke in experimental bone fracture healing. Journal of Oral Biology and Craniofacial Research, 12(5), 610–616. https://doi.org/10.1016/j.jobcr.2022.08.011
Ahangari, Z., Naseri, M., & Vatandoost, F. (2018). Propolis: chemical composition and its applications in endodontics. Iranian Endodontic Journal, 13(3), 285–292. https://doi.org/10.22037/iej.v13i3.20994
Alanazi, S., & Alenzi, N. D. (2024). Phytochemical profiling and characterization of flavonoid derivatives from propolis sample and investigation of cytotoxic and antiprotozoal activities. Scientific Reports, 14, 21295. https://doi.org/10.1038/s41598-024-72379-y
Alkhaldy, A., Edwards, C. A., & Combet, E. (2019). The urinary phenolic acid profile varies between younger and older adults after a polyphenol-rich meal despite limited differences in in vitro colonic catabolism. European Journal of Nutrition, 58(3), 1095–1111. https://doi.org/10.1007/s00394-018-1625-1
Andritoiu, C. V., Lungu, C., Iurciuc, C. E., Andriescu, C. E., Havarneanu, C., Popa, M., Cuciureanu, M., Tarţău, L. M., & Ivanescu, B. (2025). In vivo assessment of healing potential of ointments containing bee products, vegetal extracts, and polymers on skin lesions. Pharmaceuticals, 18(1), 65. https://doi.org/10.3390/ph18010065
Anjum, S. I., Ullah, A., Khan, K. A., Attaullah, M., Khan, H., Ali, H., Bashir, M., Tahir, M., Ansari, M. J., Ghramh, H. A., Adgaba, N., & Dash, C. K. (2019). Composition and functional properties of propolis (bee glue): A review. Saudi Journal of Biological Sciences, 26(7), 1695–1703. https://doi.org/10.1016/j.sjbs.2018.08.013
Balderas-Cordero, D., Canales-Alvarez, O., Sánchez-Sánchez, R., Cabrera-Wrooman, A., Canales-Martinez, M. M., & Rodriguez-Monroy, M. A. (2023). Anti-inflammatory and histological analysis of skin wound healing through topical application of Mexican propolis. International Journal of Molecular Sciences, 24(14), 11831. https://doi.org/10.3390/ijms241411831
Bankova, V., de Castro, S. L., & Marcucci, M. C. (2000). Propolis: recent advances in chemistry and plant origin. Apidologie, 31, 3–15. http://dx.doi.org/10.1051/apido:2000102
Bankova, V. (2005). Chemical diversity of propolis and the problem of standardization. Journa of Ethnopharmacology, 100(1–2), 114–117. https://doi.org/10.1016/j.jep.2005.05.004
Bhatti, N., Hajam, Y. A., Mushtaq, S., Kaur, L., Kumar, R., & Rai, S. (2024). A review on dynamic pharmacological potency and multifaceted biological activities of propolis. Discover Sustainability, 5, 185. https://doi.org/10.1007/s43621-024-00375-3
Caperuto, E. C., Nicoletti, M. A., Silva, M. M., Cezar, T., Goularte, J. O., Gusmão, N., Andrade Barbosa, C., de Souza Spinosa, H., Weckx Peña Muñoz, J., & Fukushima, A. R. (2019). Effects of artepelin-C supplementation present in propolis related to inflammatory processes in physically active individuals. International Journal of Food and Nutrition Research, 3, 1–23. https://doi.org/10.28933/ijnfr-2019-01-1806
Chaihongsa, N., Maneesai, P., Sangartit, W., Rattanakanokchai, S., Potue, P., Khamseekaew, J., Bunbupha, S., & Pakdeechote, P. (2022). Cardiorenal dysfunction and hypertrophy induced by renal artery occlusion are normalised by galangin treatment in rats. Biomedicine & Pharmacotherapy, 152, Article 113231. https://doi.org/10.1016/j.biopha.2022.113231
Cheng, L., Wang, J., Wang, Y., Li, J., & Yang, W. (2025). Network pharmacology and experimental validation reveal therapeutic potential of propolis in UV-induced allergic dermatitis. Foods, 14(6), 996. https://doi.org/10.3390/foods14060996
Conceição, M., Gushiken, L. F. S., Aldana-Mejía, J. A., Tanimoto, M. H., Ferreira, M. V. d. S., Alves, A. C. M., Miyashita, M. N., Bastos, J. K., Beserra, F. P., & Pellizzon, C. H. (2022). Histological, immunohistochemical and antioxidant analysis of skin wound healing influenced by the topical application of Brazilian red propolis. Antioxidants, 11(11), 2188. https://doi.org/10.3390/antiox11112188
Egawa, T., Ohno, Y., Yokoyama, S., Yokokawa, T., Tsuda, S., Goto, K., & Hayashi, T. (2019). The protective effect of Brazilian propolis against glycation stress in mouse skeletal muscle. Foods, 8(10), 439. https://doi.org/10.3390/foods8100439
Elsamman, M., El-Borady, O. M., Nasr, M. M., Al-Amgad, Z., & Metwally, A. A. (2024). Development of propolis, hyaluronic acid, and vitamin K nano-emulsion for the treatment of second-degree burns in albino rats. BMC Complementary Medicine and Therapies, 24, 92. https://doi.org/10.1186/s12906-024-04377-6
Feng, R., Wang, Q., Yu, T., Hu, H., Wu, G., Duan, X., Jiang, R., Xu, Y., & Huang, Y. (2024). Quercetin ameliorates bone loss in OVX rats by modulating the intestinal flora–SCFAs–inflammatory signalling axis. International Immunopharmacology, 136, Article 112341. https://doi.org/10.1016/j.intimp.2024.112341
Irandoust, K., Gholamhosseini, M., Samimi, R., Dergaa, I., Ben Saad, H., & Taheri, M. (2024). The effects of high-intensity interval training and Iranian propolis extract on serum levels of TRPV4 and CYP2E1 proteins in patients with nonalcoholic fatty liver. La Tunisie Médicale, 102(1), 19–25. https://doi.org/10.62438/tunismed.v102i1.4669
Guo, J., Su, K., Wang, L., Feng, B., You, X., Deng, M., Seong, W., Toh, J. W., Cheng, B., & Xia, J. (2024). Poly(p-coumaric acid) nanoparticles alleviate temporomandibular joint osteoarthritis by inhibiting chondrocyte ferroptosis. Bioactive Materials, 40, 212–226. https://doi.org/10.1016/j.bioactmat.2024.06.007
Gupta, P., Singh, A., Singh, N., Ali, F., Tyagi, A., & Shanmugam, S. K. (2022). Healing potential of propolis extract–Passiflora edulis seed oil emulgel against excisional wound: Biochemical, histopathological, and cytokine-level evidence. ASSAY and Drug Development Technologies, 20(7), 300–316. https://doi.org/10.1089/adt.2022.075
Hidalgo, M., Railef, B., Rodríguez, V., Navarro, C., Rubio, V., Meneses-Pacheco, J., Soto-Alarcón, S., Kreindl, C., Añazco, C., Zuñiga, L., Porras, O. (2025). The antioxidant property of CAPE depends on TRPV1 channel activation in microvascular endothelial cells. Redox Biology, 80, Article 103507. https://doi.org/10.1016/j.redox.2025.103507
Hong, G., Li, S., Zheng, G., Zheng, X., Zhan, Q., Zhou, L., Wei, Q., He, W., & Chen, Z. (2024). Therapeutic potential of the dihydroxyflavanone pinocembrin for osteolytic bone disease: In vitro and in vivo evidence. Journal of Orthopaedic Translation, 45, 197–210. https://doi.org/10.1016/j.jot.2023.12.007
Huang, S., Zhang, C. P., Wang, K., Li, G. Q., & Hu, F. L. (2014). Recent advances in the chemical composition of propolis. Molecules, 19(12), 19610–19632. https://doi.org/10.3390/molecules191219610
Huang, S., Yang, X., Ma, J., Li, C., Wang, Y., & Wu, Z. (2025). Ethanol extract of propolis relieves exercise-induced fatigue via modulating the metabolites and gut microbiota in mice. Frontiers in Nutrition, 12, Article 1549913. https://doi.org/10.3389/fnut.2025.1549913
Imai, H., Era, S., Hayashi, T., Negawa, T., Matsuyama, Y., Okihara, K., Nakatsuma, A., & Yamada, H. (2005). Effect of propolis supplementation on the redox state of human serum albumin during high-intensity kendo training. Advances in Exercise and Sports Physiology, 11(3), 109–113.
Islam, S., Hussain, E. A., Shujaat, S., & Rasheed, M. A. (2024). Green synthesis of propolis-mediated silver nanoparticles with antioxidant, antibacterial, and anti-inflammatory properties and their burn-wound-healing efficacy in an animal model. Biomedical Physics & Engineering Express, 11(1), 015050. https://doi.org/10.1088/2057-1976/ad9dee
Jenny, J. C., Kuś, P. M., & Szweda, P. (2024). Investigation of antifungal and antibacterial potential of green extracts of propolis. Scientific Reports, 14, 13613. https://doi.org/10.1038/s41598-024-64111-7
Kapare, H. S., Giram, P. S., Raut, S. S., Gaikwad, H. K., & Paiva-Santos, A. C. (2023). Formulation development and evaluation of Indian propolis hydrogel for wound healing. Gels, 9(5), 375. https://doi.org/10.3390/gels9050375
Kurek-Górecka, A., Kłósek, M., Pietsz, G., Balwierz, R., Olczyk, P., & Czuba, Z. P. (2024). Ethanolic extract of propolis and CAPE as cardioprotective agents against LPS and IFN-α-induced cardiovascular injury. Nutrients, 16(5), 627. https://doi.org/10.3390/nu16050627
Kwon, T. D., Lee, M. W., & Kim, K .H. (2014). The effect of exercise training and water extract from propolis intake on the antioxidant enzyme activity of skeletal muscle and liver in rats. Journal of Exercise Nutrition & Biochemistry, 18(1), 9–17. https://doi.org/10.5717/jenb.2014.18.1.9
Lee, W., Cho, J., Yoo, S.-Y., & Park, E. (2025). Combination of ferulic acid and exercise alleviates menopause symptoms and skin remodelling in ovariectomised rats. Nutrition Research and Practice, 19(1), 30–40. https://doi.org/10.4162/nrp.2025.19.1.30
Ma, G., Zhang, J., Yang, X., Guo, P., Hou, X., Fan, Y., Liu, Y., & Zhang, M. (2020). TMEM16A-encoded anoctamin 1 inhibition contributes to chrysin-induced coronary relaxation. Biomedicine & Pharmacotherapy, 131, 110766. https://doi.org/10.1016/j.biopha.2020.110766
Magnavacca, A., Sangiovanni, E., Gelmini, F., Piazza, S., Fumagalli, M., Martinelli, G., Pozzoli, C., Angarano, M., Beretta, G., & Dell’Agli, M. (2022). Brazilian propolis: A multifaceted natural product that modulates HIF-1 pathway – new perspectives for cutaneous wound healing and regeneration. Planta Medica, 88(15), 1518. https://doi.org/10.1055/s-0042-1759203
Majewska-Wierzbicka, M., & Czeczot, H. (2012). Anticancer activity of flavonoids. Polski Merkuriusz Lekarski, 33(198), 364–369.
Moayedi, F., Taghian, F., Dehkordi, K. J., & Hosseini, S. A. (2023). Cumulative effects of exercise training and consumption of propolis on managing diabetic dyslipidemia in adult women: a single-blind, randomized, controlled trial with pre–post-intervention assessments. The Journal of Physiological Sciences, 73(1), 17. https://doi.org/10.1186/s12576-023-00872-6
Nosratiyan, M., Farjah, G. H., Karimipour, M., & Pourheidar, B. (2021). The effect of propolis-gum Arabic as a novel nerve guidance channel on regeneration of sciatic nerve in male rats. Turkish Neurosurgery, 31(3), 361–367. https://doi.org/10.5137/1019-5149.jtn.29813-20.2
Okamura, T., Hamaguchi, M., Bamba, R., Nakajima, H., Yoshimura, Y., Kimura, T., Hashimoto, Y., Majima, S., Senmaru, T., Ushigome, E., Nakanishi, N., Asano, M., Yamazaki, M., Nishimoto, Y., Yamada, T., Fujikura, C., Asama, T., Okumura, N., Takakuwa, H., Sasano, R., & Fukui, M. (2022). Brazilian green propolis improves gut microbiota dysbiosis and protects against sarcopenic obesity. Journal of Cachexia, Sarcopenia and Muscle, 13(6), 3028–3047. https://doi.org/10.1002/jcsm.13076
Pandareesh, M., Mythri, R., & Bharath, M. S. (2015). Bioavailability of dietary polyphenols: Factors contributing to their clinical application in CNS diseases. Neurochemistry International, 89, 198–208. https://doi.org/10.1016/j.neuint.2015.07.003
Pietta, P., Gardana, C., & Pietta, A. (2002). Analytical methods for quality control of propolis. Fitoterapia, 73(Suppl.1), S7–S20. https://doi.org/10.1016/s0367-326x(02)00186-7
Qiu, W., Li, Z., Su, Z., Cao, L., Li, L., Chen, X., Zhang, W., & Li, Y. (2023). Kaempferol prevents aseptic loosening via enhancing the Wnt/β-catenin signalling pathway in vitro and in vivo. European Journal of Medical Research, 28(1), Article 505. https://doi.org/10.1186/s40001-023-01469-w
Rashvand, F., Irandoust, K., Taheri, M., Gholamzadeh Khoei, S., & Gheibi, N. (2022). The effect of four weeks of long-term endurance training with and without propolis supplementation on serum levels of Betatrophin/ANGPTL8 in male athletes. Asian Journal of Sports Medicine, 13(3), e120515. https://doi.org/10.5812/asjsm-120515
Rojczyk, E., Klama-Baryła, A., Łabuś, W., Wilemska-Kucharzewska, K., & Kucharzewski, M. (2020). Historical and modern research on propolis and its application in wound healing and other fields of medicine and contributions by Polish studies. Journal of Ethnopharmacology, 262, 113159. https://doi.org/10.1016/j.jep.2020.113159
Saritaş, N., Soylu, M., Akdoğan, H., & Silici, S. (2023). Effect of honeybee products on exercise performance and blood chemistry characteristics in gymnasts. Journal of Sport Sciences Research, 8(3), 674–687. https://doi.org/10.25307/jssr.1325446
Soleimani, D., Miryan, M., Hadi, V., Gholizadeh Navashenaq, J., Moludi, J., Sayedi, S. M., Bagherniya, M., Askari, G., Nachvak, S. M., Sadeghi, E., Rashidi, A. A., & Hadi, S. (2021). Effect of propolis supplementation on athletic performance, body composition, inflammation, and oxidative stress following intense exercise: A triple-blind randomized clinical trial. Food Science & Nutrition, 9(7), 3631–3640. https://doi.org/10.1002/fsn3.2319
Son, N. T., Gianibbi, B., Panti, A., Spiga, O., Bastos, J. K., & Fusi, F. (2024). 3,3′-O-dimethylquercetin: A bi-functional vasodilator isolated from green propolis of the Caatinga Mimosa tenuiflora. European Journal of Pharmacology, 967, 176400. https://doi.org/10.1016/j.ejphar.2024.176400
Sun, W., Xie, W., Huang, D., Cui, Y., Yue, J., He, Q., Jiang, L., Xiong, J., Sun, W., & Yi, Q. (2022). Caffeic acid phenethyl ester attenuates osteoarthritis progression by activating NRF2/HO-1 and inhibiting the NF-κB signalling pathway. International Journal of Molecular Medicine, 50(5), Article 134. https://doi.org/10.3892/ijmm.2022.5190
Tahmasebi, E., & Yazdanian, A. (2025). The effect of collagen–propolis–eucalyptus hydrogel in wound healing: An in vivo study (rat model). Veterinary Medicine and Science, 11(2), e70225. https://doi.org/10.1002/vms3.70225
Tanaka, M., Kanazashi, M., Maeshige, N., Kondo, H., Ishihara, & A., Fujino, H. (2019). Protective effects of Brazilian propolis supplementation on capillary regression in the soleus muscle of hindlimb-unloaded rats. The Journal of Physiological Sciences, 69(2), 223–233. https://doi.org/10.1007/s12576-018-0639-z
Tew, W. Y., Tan, C. S., Yan, C. S., Loh, H. W., Wen, X., Wei, X., & Yam, M. F. (2023). Evaluation of vasodilatory and antihypertensive effects of chrysin through in vitro and sub-chronic in vivo study. Biomedicine & Pharmacotherapy, 157, Article 114020. https://doi.org/10.1016/j.biopha.2022.114020
Tian, S., Zhao, H., Liu, J., Ma, X., Zheng, L., Guo, H., & Jiang, Y. (2022). Metabolomics reveals that alcohol extract of propolis alleviates D-gal-induced skeletal muscle senescence in mice. Food Bioscience, 49, Article 101885. https://doi.org/10.1016/j.fbio.2022.101885
Tian, S., Zhao, H., Guo, H., Feng, W., Jiang, C., & Jiang, Y. (2023). Propolis ethanolic extract attenuates D-gal-induced C2C12 cell injury by modulating Nrf2/HO-1 and p38/p53 signalling pathways. International Journal of Molecular Sciences, 24(7), 6408. https://doi.org/10.3390/ijms24076408
Toreti, V. C., Sato, H. H., Pastore, G. M., & Park, Y. K. (2013). Recent progress of propolis for its biological and chemical compositions and its botanical origin. Evidence-Based Complementary and Alternative Medicine, 2013, Article 697390. https://doi.org/10.1155/2013/697390
Tsuchiya, Y., Hirata, N., Asama, T., Osakabe, N., Hirata, K., & Akagi, R. (2022). Can a short-term daily oral administration of propolis improve muscle fatigue and recovery? International Journal of Sports Medicine, 43(10), 859–864. https://doi.org/10.1055/a-1808–6319
Wang, H., Liu, X., Yang, H., Jing, X., Wang, W., Liu, X., Zhang, B., Liu, X., Shao, Y., & Cui, X. (2023). Activation of the Nrf-2 pathway by pinocembrin safeguards vertebral endplate chondrocytes against apoptosis and degeneration caused by oxidative stress. Life Sciences, 333, Article 122162. https://doi.org/10.1016/j.lfs.2023.122162
Zhou, H., Wang, H., Shi, N., & Wu, F. (2020). Potential protective effects of water-soluble Chinese propolis on hypertension induced by high-salt intake. Clinical and Translational Science, 13(5), 907–915. https://doi.org/10.1111/cts.12770
Views:
121
Downloads:
30
Copyright (c) 2025 Paula Folta, Anna Opalińska, Cezary Lubas, Joanna Kłosowska, Kacper Szeląg, Karolina Błądzińska, Maciej Błądziński, Małgorzata Zach, Piotr Świerczek, Antoni Kujawski

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.





