THE EFFECTS OF IRON DEFICIENCY ON NEUROTRANSMISSION AND COGNITIVE FUNCTION: A LITERATURE REVIEW

Keywords: Iron Deficiency, Blood–Brain Barrier, Cognition, Transferrin Receptor, Neurodevelopment, Neurotransmitters, Supplementation, Neurotoxicity

Abstract

Iron, though required by the body in only trace amounts, is quietly indispensable for the healthy maturation and continued function of the brain. Its passage into the central nervous system is no accident; rather, it is subject to rigorous control, with the blood–brain barrier’s transferrin receptor system acting as a gatekeeper. When this delicate equilibrium is disturbed—whether by deficit or surplus—the consequences are far-reaching. Neuronal signalling falters, mitochondria become less efficient, and measurable drops in cognitive performance begin to appear. Among the neurotransmitter networks, the dopaminergic, serotonergic, and glutamatergic pathways seem especially sensitive to fluctuations in iron status, and their impairment is most evident in memory, learning, and behaviour. Infants and children, along with pregnant women and patients contending with chronic illness, are particularly vulnerable; for some, these neurodevelopmental effects may linger long after the original insult. While supplementing iron frequently reverses the deficiency, an overzealous approach can tip the scales toward toxicity. The art of clinical management lies in tailoring iron repletion to individual needs, ensuring robust neurodevelopment without courting the hazards of excess.

References

Camaschella C. Iron deficiency. Blood. 2019;133(1):30-39. doi:10.1182/blood-2018-05-815944

Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci. 2014;19(2):164-174. PMC3999603

Rouault TA. Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci. 2013;14(8):551-564. doi:10.1038/nrn3453

Beard JL, Connor JR. Iron status and neural functioning. Annu Rev Nutr. 2003;23:41-58. doi:10.1146/annurev.nutr.23.020102.075739

Lozoff B. Iron deficiency and child development. Food Nutr Bull. 2007;28(4 suppl):S560-S571. doi:10.1177/15648265070284S406

Todorich B, Pasquini JM, Garcia CI, Paez PM, Connor JR. Oligodendrocytes and myelination: the role of iron. Glia. 2009;57(5):467-478. doi:10.1002/glia.20784

Georgieff MK. Iron deficiency in pregnancy. Am J Obstet Gynecol. 2020;223(4):516-524. doi:10.1016/j.ajog.2020.03.006

Hare DJ, Double KL. Iron and dopamine: a toxic couple. Brain. 2016;139(Pt 4):1026-1035. doi:10.1093/brain/aww022

Ayton S, Faux NG, Bush AI; Alzheimer's Disease Neuroimaging Initiative. Ferritin levels in the cerebrospinal fluid predict Alzheimer's disease outcomes and are regulated by APOE. Nat Commun. 2015;6:6760. doi:10.1038/ncomms7760

Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13(10):1045-1060. doi:10.1016/S1474-4422(14)70117-6

Moos T, Morgan EH. Transferrin and transferrin receptor function in brain barrier systems. Cell Mol Neurobiol. 2000;20(1):77-95. doi:10.1023/a:1006948027674

Moos, T., Skjoerringe, T., Gosk, S. and Morgan, E.H. (2006), Brain capillary endothelial cells mediate iron transport into the brain by segregating iron from transferrin without the involvement of divalent metal transporter 1. Journal of Neurochemistry, 98: 1946-1958. https://doi.org/10.1111/j.1471-4159.2006.04023.x

McCarthy RC, Kosman DJ. Iron transport across the blood-brain barrier: development, neurovascular regulation, and cerebral amyloid angiopathy. Cell Mol Life Sci. 2015;72(4):709-727. doi:10.1007/s00018-014-1771-4

Duck KA, Connor JR. Iron uptake and transport across physiological barriers. Biometals. 2016;29(4):573-591. 10.1007/s10534-016-9952-2

Leung AKC, Lam JM, Wong AHC, Hon KL, Li X. Iron Deficiency Anemia: An Updated Review. Curr Pediatr Rev. 2024;20(3):339-356. doi:10.2174/1573396320666230727102042

Talarico V, Giancotti L, Mazza GA, Miniero R, Bertini M. Iron Deficiency Anemia in Celiac Disease. Nutrients. 2021;13(5):1695. doi:10.3390/nu13051695

Gafter-Gvili A, Schechter A, Rozen-Zvi B. Iron Deficiency Anemia in Chronic Kidney Disease. Acta Haematol. 2019;142(1):44-50. doi:10.1159/000496492

Mansour D, Hofmann A, Gemzell-Danielsson K. A Review of Clinical Guidelines on the Management of Iron Deficiency and Iron-Deficiency Anemia in Women with Heavy Menstrual Bleeding. Adv Ther. 2021;38(1):201-225. doi:10.1007/s12325-020-01564-y

Zimmermann MB, Hurrell RF. Nutritional iron deficiency. Lancet. 2007;370(9586):511-520. 10.1016/S0140-6736(07)61235-5

Lanas A, Andrews JM, Lau J, Toruner M, Bromley SE, Gralnek IM. Management of iron-deficiency anemia following acute gastrointestinal hemorrhage: A narrative analysis and review. J Gastroenterol Hepatol. 2023;38(1):23-33. doi:10.1111/jgh.16033

Kelly LS, Munley JA, Kannan KB, et al. Anemia Recovery after Trauma: A Longitudinal Study. Surg Infect (Larchmt). 2023;24(1):39-45. doi:10.1089/sur.2022.299

Haldeman MS, Nolan MS, Ng'habi KRN. Human hookworm infection: Is effective control possible? A review of hookworm control efforts and future directions. Acta Trop. 2020;201:105214. doi:10.1089/sur.2022.299

D'Angelo G. Role of hepcidin in the pathophysiology and diagnosis of anemia. Blood Res. 2013;48(1):10-15. doi: 10.5045/br.2013.48.1.10

Matsuoka T, Abe M, Kobayashi H. Iron Metabolism and Inflammatory Mediators in Patients with Renal Dysfunction. Int J Mol Sci. 2024;25(7):3745. doi:10.3390/ijms25073745

Warner MJ, Kamran MT. Iron Deficiency Anemia. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023 Aug 7. StatPearls

McCarthy EK, Schneck D, Basu S, et al. Longitudinal evaluation of iron status during pregnancy: a prospective cohort study in a high-resource setting. Am J Clin Nutr. 2024;120(5):1259-1268. doi: 10.1016/j.ajcnut.2024.08.010

Stahl-Gugger A, de Godoi Rezende Costa Molino C, Wieczorek M, et al. Prevalence and incidence of iron deficiency in European community-dwelling older adults: an observational analysis of the DO-HEALTH trial. Aging Clin Exp Res. 2022;34(9):2205-2215. doi: 10.1007/s40520-022-02093-0

Bani-Ahmad M, Ahmad M, Obeidat M, Barqawi M. The modulation of Plasma Levels of Dopamine, Serotonin, and Brain-derived neurotrophic factor in response to variation in iron availability. Acta Biomed. 2022;93(6):e2022293. Published 2022 Dec 16. doi: 10.23750/abm.v93i6.13276

Beard J. Iron deficiency alters brain development and functioning. J Nutr. 2003;133(5 Suppl 1):1468S-72S. DOI: 10.1093/jn/133.5.1468S

Yehuda, S., Yehuda, M. (2006). Long lasting effects of infancy iron deficiency — Preliminary results. In: Parvez, H., Riederer, P. (eds) Oxidative Stress and Neuroprotection. Journal of Neural Transmission. Supplementa, vol 71. Springer, Vienna. https://doi.org/10.1007/978-3-211-33328-0_20

Beard JL. Iron deficiency alters brain development. J Nutr. 2003;133(5):1468S–1472S. doi:10.1093/jn/133.5.1468S

Lozoff B, Georgieff MK. Iron deficiency and brain development. Semin Pediatr Neurol. 2006;13(3):158-165. doi:10.1016/j.spen.2006.08.004

Georgieff MK. The role of iron in neurodevelopment: fetal iron deficiency and the developing hippocampus. Biochem Soc Trans. 2008;36(Pt 6):1267-1271. doi:10.1042/BST0361267

Georgieff MK. Nutrition and the developing brain: nutrient priorities and measurement. Am J Clin Nutr. 2007;85(2):614S–620S. doi:10.1093/ajcn/85.2.614S

Wachnowsky C, Fidai I, Cowan JA. Iron–sulfur cluster biosynthesis and trafficking – impact on human disease conditions. Metallomics. 2018;10(1):9–29. doi:10.1039/c7mt00180k

Levi S, Rovida E. Neurodegeneration with brain iron accumulation: update on pathogenic mechanisms. Front Pharmacol. 2014;5:99. doi:10.3389/fphar.2014.00099

Macdonald VW, Charache S, Hathaway PJ. Iron deficiency anemia: mitochondrial α-glycerophosphate dehydrogenase in guinea pig skeletal muscle. J Lab Clin Med. 1985;105(1):11–18. PMID:2981941

Jarvis JH, Jacobs A. Morphological abnormalities in lymphocyte mitochondria associated with iron-deficiency anaemia. J Clin Pathol. 1974;27(12):973–979. doi:10.1136/jcp.27.12.973

Paul BT, Manz DH, Torti FM, Torti SV. Mitochondria and Iron: current questions [published correction appears in Expert Rev Hematol. 2017 Mar;10(3):275. doi: 10.1080/17474086.2017.1287270.]. Expert Rev Hematol. 2017;10(1):65-79. doi:10.1080/17474086.2016.1268047

Shah HE, Bhawnani N, Ethirajulu A, et al. Iron Deficiency-Induced Changes in the Hippocampus, Corpus Striatum, and Monoamines Levels That Lead to Anxiety, Depression, Sleep Disorders, and Psychotic Disorders. Cureus. 2021;13(9):e18138. doi:10.7759/cureus.18138

Korczak A, Wójcik E, Olek E, et al. The Long-term Effects of Iron Deficiency in Early Infancy on Neurodevelopment. J Educ Health Sport. 2024;70:51104. doi:10.12775/JEHS.2024.70.51104

Verdon F, Burnand B, Stubi CL, et al. Iron supplementation for unexplained fatigue in non-anaemic women: double blind randomised placebo controlled trial. BMJ. 2003;326(7399):1124. doi:10.1136/bmj.326.7399.1124

Sachdev H, Gera T, Nestel P. Effect of iron supplementation on mental and motor development in children: systematic review of randomised controlled trials. Public Health Nutr. 2005;8(2):117-132. doi:10.1079/phn2004677

Low M, Farrell A, Biggs BA, Pasricha SR. Effects of daily iron supplementation in primary-school-aged children: systematic review and meta-analysis of randomized controlled trials. CMAJ. 2013;185(17):E791-E802. doi:10.1503/cmaj.130628

Krayenbuehl PA, Battegay E, Breymann C, Furrer J, Schulthess G. Intravenous iron for the treatment of fatigue in nonanemic, premenopausal women with low serum ferritin concentration. Blood. 2011;118(12):3222-3227. doi:10.1182/blood-2011-04-346304

Arcani R, Suchon P, Venton G, et al. Efficacy of intravenous iron therapy in non-anaemic iron-deficient patients with fatigue. Neth J Med. 2020;78(1):34-36.

Lozoff B, Beard J, Connor J, et al. Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr Rev. 2006;64(5 Pt 2):S34–S43. doi:10.1301/nr.2006.may.s34-s43

Tamura T, Goldenberg RL, Hou J, et al. Cord serum ferritin concentrations and mental and psychomotor development of children at five years of age. J Pediatr. 2002;140(2):165-170. doi:10.1067/mpd.2002.120688

Zhou SJ, Gibson RA, Crowther CA, et al. Effect of iron supplementation in pregnancy on the behaviour of children at early school age: long-term follow-up of a randomised controlled trial. Br J Nutr. 2006;95(3):679–684. doi:10.1067/mpd.2002.120688

Zecca L, Youdim MB, Riederer P, et al. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci. 2004;5(11):863–873. doi:10.1038/nrn1537

Qian ZM, Wang Q. Expression of iron transport proteins and excessive iron accumulation in the brain in neurodegenerative disorders. Brain Res Brain Res Rev. 1998;27(3):257–267. doi:10.1016/s0165-0173(98)00012-5

Rodrigue KM, Haacke EM, Raz N. Differential effects of age and history of hypertension on regional brain volumes and iron. Neuroimage. 2011;54(1):750–759. doi: 10.1093/cercor/bhs139

Views:

83

Downloads:

26

Published
2025-09-30
Citations
How to Cite
Marta Ewelina Lis, Katarzyna Rumianek-Fidziukiewicz, Kornelia Kaźmierkiewicz, Martyna Chojnacka, Ewa Ciechańska, Kornel Kapuśniak, Weronika Suszczyńska, Zuzanna Lasota, Weronika Domańska, & Agata Zając. (2025). THE EFFECTS OF IRON DEFICIENCY ON NEUROTRANSMISSION AND COGNITIVE FUNCTION: A LITERATURE REVIEW. International Journal of Innovative Technologies in Social Science, 4(3(47). https://doi.org/10.31435/ijitss.3(47).2025.3997

Most read articles by the same author(s)