THE EFFECTS OF IRON DEFICIENCY ON NEUROTRANSMISSION AND COGNITIVE FUNCTION: A LITERATURE REVIEW
Abstract
Iron, though required by the body in only trace amounts, is quietly indispensable for the healthy maturation and continued function of the brain. Its passage into the central nervous system is no accident; rather, it is subject to rigorous control, with the blood–brain barrier’s transferrin receptor system acting as a gatekeeper. When this delicate equilibrium is disturbed—whether by deficit or surplus—the consequences are far-reaching. Neuronal signalling falters, mitochondria become less efficient, and measurable drops in cognitive performance begin to appear. Among the neurotransmitter networks, the dopaminergic, serotonergic, and glutamatergic pathways seem especially sensitive to fluctuations in iron status, and their impairment is most evident in memory, learning, and behaviour. Infants and children, along with pregnant women and patients contending with chronic illness, are particularly vulnerable; for some, these neurodevelopmental effects may linger long after the original insult. While supplementing iron frequently reverses the deficiency, an overzealous approach can tip the scales toward toxicity. The art of clinical management lies in tailoring iron repletion to individual needs, ensuring robust neurodevelopment without courting the hazards of excess.
References
Camaschella C. Iron deficiency. Blood. 2019;133(1):30-39. doi:10.1182/blood-2018-05-815944
Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci. 2014;19(2):164-174. PMC3999603
Rouault TA. Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci. 2013;14(8):551-564. doi:10.1038/nrn3453
Beard JL, Connor JR. Iron status and neural functioning. Annu Rev Nutr. 2003;23:41-58. doi:10.1146/annurev.nutr.23.020102.075739
Lozoff B. Iron deficiency and child development. Food Nutr Bull. 2007;28(4 suppl):S560-S571. doi:10.1177/15648265070284S406
Todorich B, Pasquini JM, Garcia CI, Paez PM, Connor JR. Oligodendrocytes and myelination: the role of iron. Glia. 2009;57(5):467-478. doi:10.1002/glia.20784
Georgieff MK. Iron deficiency in pregnancy. Am J Obstet Gynecol. 2020;223(4):516-524. doi:10.1016/j.ajog.2020.03.006
Hare DJ, Double KL. Iron and dopamine: a toxic couple. Brain. 2016;139(Pt 4):1026-1035. doi:10.1093/brain/aww022
Ayton S, Faux NG, Bush AI; Alzheimer's Disease Neuroimaging Initiative. Ferritin levels in the cerebrospinal fluid predict Alzheimer's disease outcomes and are regulated by APOE. Nat Commun. 2015;6:6760. doi:10.1038/ncomms7760
Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13(10):1045-1060. doi:10.1016/S1474-4422(14)70117-6
Moos T, Morgan EH. Transferrin and transferrin receptor function in brain barrier systems. Cell Mol Neurobiol. 2000;20(1):77-95. doi:10.1023/a:1006948027674
Moos, T., Skjoerringe, T., Gosk, S. and Morgan, E.H. (2006), Brain capillary endothelial cells mediate iron transport into the brain by segregating iron from transferrin without the involvement of divalent metal transporter 1. Journal of Neurochemistry, 98: 1946-1958. https://doi.org/10.1111/j.1471-4159.2006.04023.x
McCarthy RC, Kosman DJ. Iron transport across the blood-brain barrier: development, neurovascular regulation, and cerebral amyloid angiopathy. Cell Mol Life Sci. 2015;72(4):709-727. doi:10.1007/s00018-014-1771-4
Duck KA, Connor JR. Iron uptake and transport across physiological barriers. Biometals. 2016;29(4):573-591. 10.1007/s10534-016-9952-2
Leung AKC, Lam JM, Wong AHC, Hon KL, Li X. Iron Deficiency Anemia: An Updated Review. Curr Pediatr Rev. 2024;20(3):339-356. doi:10.2174/1573396320666230727102042
Talarico V, Giancotti L, Mazza GA, Miniero R, Bertini M. Iron Deficiency Anemia in Celiac Disease. Nutrients. 2021;13(5):1695. doi:10.3390/nu13051695
Gafter-Gvili A, Schechter A, Rozen-Zvi B. Iron Deficiency Anemia in Chronic Kidney Disease. Acta Haematol. 2019;142(1):44-50. doi:10.1159/000496492
Mansour D, Hofmann A, Gemzell-Danielsson K. A Review of Clinical Guidelines on the Management of Iron Deficiency and Iron-Deficiency Anemia in Women with Heavy Menstrual Bleeding. Adv Ther. 2021;38(1):201-225. doi:10.1007/s12325-020-01564-y
Zimmermann MB, Hurrell RF. Nutritional iron deficiency. Lancet. 2007;370(9586):511-520. 10.1016/S0140-6736(07)61235-5
Lanas A, Andrews JM, Lau J, Toruner M, Bromley SE, Gralnek IM. Management of iron-deficiency anemia following acute gastrointestinal hemorrhage: A narrative analysis and review. J Gastroenterol Hepatol. 2023;38(1):23-33. doi:10.1111/jgh.16033
Kelly LS, Munley JA, Kannan KB, et al. Anemia Recovery after Trauma: A Longitudinal Study. Surg Infect (Larchmt). 2023;24(1):39-45. doi:10.1089/sur.2022.299
Haldeman MS, Nolan MS, Ng'habi KRN. Human hookworm infection: Is effective control possible? A review of hookworm control efforts and future directions. Acta Trop. 2020;201:105214. doi:10.1089/sur.2022.299
D'Angelo G. Role of hepcidin in the pathophysiology and diagnosis of anemia. Blood Res. 2013;48(1):10-15. doi: 10.5045/br.2013.48.1.10
Matsuoka T, Abe M, Kobayashi H. Iron Metabolism and Inflammatory Mediators in Patients with Renal Dysfunction. Int J Mol Sci. 2024;25(7):3745. doi:10.3390/ijms25073745
Warner MJ, Kamran MT. Iron Deficiency Anemia. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023 Aug 7. StatPearls
McCarthy EK, Schneck D, Basu S, et al. Longitudinal evaluation of iron status during pregnancy: a prospective cohort study in a high-resource setting. Am J Clin Nutr. 2024;120(5):1259-1268. doi: 10.1016/j.ajcnut.2024.08.010
Stahl-Gugger A, de Godoi Rezende Costa Molino C, Wieczorek M, et al. Prevalence and incidence of iron deficiency in European community-dwelling older adults: an observational analysis of the DO-HEALTH trial. Aging Clin Exp Res. 2022;34(9):2205-2215. doi: 10.1007/s40520-022-02093-0
Bani-Ahmad M, Ahmad M, Obeidat M, Barqawi M. The modulation of Plasma Levels of Dopamine, Serotonin, and Brain-derived neurotrophic factor in response to variation in iron availability. Acta Biomed. 2022;93(6):e2022293. Published 2022 Dec 16. doi: 10.23750/abm.v93i6.13276
Beard J. Iron deficiency alters brain development and functioning. J Nutr. 2003;133(5 Suppl 1):1468S-72S. DOI: 10.1093/jn/133.5.1468S
Yehuda, S., Yehuda, M. (2006). Long lasting effects of infancy iron deficiency — Preliminary results. In: Parvez, H., Riederer, P. (eds) Oxidative Stress and Neuroprotection. Journal of Neural Transmission. Supplementa, vol 71. Springer, Vienna. https://doi.org/10.1007/978-3-211-33328-0_20
Beard JL. Iron deficiency alters brain development. J Nutr. 2003;133(5):1468S–1472S. doi:10.1093/jn/133.5.1468S
Lozoff B, Georgieff MK. Iron deficiency and brain development. Semin Pediatr Neurol. 2006;13(3):158-165. doi:10.1016/j.spen.2006.08.004
Georgieff MK. The role of iron in neurodevelopment: fetal iron deficiency and the developing hippocampus. Biochem Soc Trans. 2008;36(Pt 6):1267-1271. doi:10.1042/BST0361267
Georgieff MK. Nutrition and the developing brain: nutrient priorities and measurement. Am J Clin Nutr. 2007;85(2):614S–620S. doi:10.1093/ajcn/85.2.614S
Wachnowsky C, Fidai I, Cowan JA. Iron–sulfur cluster biosynthesis and trafficking – impact on human disease conditions. Metallomics. 2018;10(1):9–29. doi:10.1039/c7mt00180k
Levi S, Rovida E. Neurodegeneration with brain iron accumulation: update on pathogenic mechanisms. Front Pharmacol. 2014;5:99. doi:10.3389/fphar.2014.00099
Macdonald VW, Charache S, Hathaway PJ. Iron deficiency anemia: mitochondrial α-glycerophosphate dehydrogenase in guinea pig skeletal muscle. J Lab Clin Med. 1985;105(1):11–18. PMID:2981941
Jarvis JH, Jacobs A. Morphological abnormalities in lymphocyte mitochondria associated with iron-deficiency anaemia. J Clin Pathol. 1974;27(12):973–979. doi:10.1136/jcp.27.12.973
Paul BT, Manz DH, Torti FM, Torti SV. Mitochondria and Iron: current questions [published correction appears in Expert Rev Hematol. 2017 Mar;10(3):275. doi: 10.1080/17474086.2017.1287270.]. Expert Rev Hematol. 2017;10(1):65-79. doi:10.1080/17474086.2016.1268047
Shah HE, Bhawnani N, Ethirajulu A, et al. Iron Deficiency-Induced Changes in the Hippocampus, Corpus Striatum, and Monoamines Levels That Lead to Anxiety, Depression, Sleep Disorders, and Psychotic Disorders. Cureus. 2021;13(9):e18138. doi:10.7759/cureus.18138
Korczak A, Wójcik E, Olek E, et al. The Long-term Effects of Iron Deficiency in Early Infancy on Neurodevelopment. J Educ Health Sport. 2024;70:51104. doi:10.12775/JEHS.2024.70.51104
Verdon F, Burnand B, Stubi CL, et al. Iron supplementation for unexplained fatigue in non-anaemic women: double blind randomised placebo controlled trial. BMJ. 2003;326(7399):1124. doi:10.1136/bmj.326.7399.1124
Sachdev H, Gera T, Nestel P. Effect of iron supplementation on mental and motor development in children: systematic review of randomised controlled trials. Public Health Nutr. 2005;8(2):117-132. doi:10.1079/phn2004677
Low M, Farrell A, Biggs BA, Pasricha SR. Effects of daily iron supplementation in primary-school-aged children: systematic review and meta-analysis of randomized controlled trials. CMAJ. 2013;185(17):E791-E802. doi:10.1503/cmaj.130628
Krayenbuehl PA, Battegay E, Breymann C, Furrer J, Schulthess G. Intravenous iron for the treatment of fatigue in nonanemic, premenopausal women with low serum ferritin concentration. Blood. 2011;118(12):3222-3227. doi:10.1182/blood-2011-04-346304
Arcani R, Suchon P, Venton G, et al. Efficacy of intravenous iron therapy in non-anaemic iron-deficient patients with fatigue. Neth J Med. 2020;78(1):34-36.
Lozoff B, Beard J, Connor J, et al. Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr Rev. 2006;64(5 Pt 2):S34–S43. doi:10.1301/nr.2006.may.s34-s43
Tamura T, Goldenberg RL, Hou J, et al. Cord serum ferritin concentrations and mental and psychomotor development of children at five years of age. J Pediatr. 2002;140(2):165-170. doi:10.1067/mpd.2002.120688
Zhou SJ, Gibson RA, Crowther CA, et al. Effect of iron supplementation in pregnancy on the behaviour of children at early school age: long-term follow-up of a randomised controlled trial. Br J Nutr. 2006;95(3):679–684. doi:10.1067/mpd.2002.120688
Zecca L, Youdim MB, Riederer P, et al. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci. 2004;5(11):863–873. doi:10.1038/nrn1537
Qian ZM, Wang Q. Expression of iron transport proteins and excessive iron accumulation in the brain in neurodegenerative disorders. Brain Res Brain Res Rev. 1998;27(3):257–267. doi:10.1016/s0165-0173(98)00012-5
Rodrigue KM, Haacke EM, Raz N. Differential effects of age and history of hypertension on regional brain volumes and iron. Neuroimage. 2011;54(1):750–759. doi: 10.1093/cercor/bhs139
Views:
83
Downloads:
26
Copyright (c) 2025 Marta Ewelina Lis, Katarzyna Rumianek-Fidziukiewicz, Kornelia Kaźmierkiewicz, Martyna Chojnacka, Ewa Ciechańska, Kornel Kapuśniak, Weronika Suszczyńska, Zuzanna Lasota, Weronika Domańska, Agata Zając

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.