POLYSOMNOGRAPHY VERSUS PORTABLE DEVICES AND MOBILE APPLICATIONS IN THE DIAGNOSIS OF OBSTRUCTIVE SLEEP APNEA: A NARRATIVE REVIEW OF CURRENT EVIDENCE
Abstract
Background: Obstructive sleep apnea (OSA) represents a significant public health challenge affecting millions worldwide, yet remains largely underdiagnosed due to limitations in traditional diagnostic approaches. While polysomnography (PSG) remains the gold standard for OSA diagnosis, emerging portable devices and mobile applications offer promising Ralternatives for improving accessibility and reducing healthcare burden.
Objective: This narrative review synthesizes current evidence comparing the diagnostic accuracy and clinical utility of PSG with portable monitoring devices and mobile health applications in OSA detection, examining their role in advancing health equity and leveraging technology for improved healthcare delivery.
Methods: A comprehensive analysis of recent literature from 2016-2025 was conducted, examining studies that evaluated portable sleep monitoring devices, wearable technologies, smartphone applications, and artificial intelligence-driven solutions against PSG as the reference standard. The review focused on diagnostic accuracy metrics, technological innovations, and clinical implementation considerations.
Results: Portable monitoring devices demonstrated varying degrees of diagnostic accuracy, with home sleep apnea tests (HSATs) showing sensitivities ranging from 0.72-0.95 and specificities from 0.76-0.96 compared to PSG. Wearable devices utilizing photoplethysmography, accelerometry, and artificial intelligence algorithms achieved area under the curve (AUC) values between 0.80-0.95. Novel approaches including smartphone-based acoustic monitoring, radar technology, and bed-mounted sensors showed promising results with sensitivities exceeding 0.85 in several studies. Artificial intelligence integration significantly enhanced diagnostic performance across multiple device categories.
Discussion: The evolution of portable OSA diagnostic technologies represents a paradigm shift toward accessible, cost-effective screening and monitoring solutions. While PSG maintains superior diagnostic precision, portable devices offer substantial advantages in terms of patient comfort, cost-effectiveness, and scalability for population-based screening. The integration of artificial intelligence and machine learning algorithms has notably improved the diagnostic accuracy of these technologies.
Conclusion: Portable devices and mobile applications demonstrate significant potential for revolutionizing OSA diagnosis and management, particularly in addressing healthcare disparities and improving access to sleep medicine services. However, careful consideration of device limitations, patient selection criteria, and clinical context remains essential for optimal implementation in healthcare delivery systems.
References
Abu, K., Khraiche, M. L., & Amatoury, J. (2024). Obstructive sleep apnea diagnosis and beyond using portable monitors. Sleep Medicine, 113, 260-274. https://doi.org/10.1016/j.sleep.2023.11.034
Attia, S., Oksenberg, A., Levy, J., Ang, A., Shani-Hershkovich, R., Adler, A., Katsav, S., Haimov, S., Alexandrovich, A., Tauman, R., & Behar, J. A. (2025). Clinical validation of artificial intelligence algorithms for the diagnosis of adult obstructive sleep apnea and sleep staging from oximetry and photoplethysmography—SleepAI. Journal of Sleep Research, 0, e70093. https://doi.org/10.1111/jsr.70093
Baptista, P. M., O'Connor Reina, C., Ross, H., Plaza, G., & Casale, M. (2022). A systematic review of smartphone applications and devices for obstructive sleep apnea. Brazilian Journal of Otorhinolaryngology, 88(S5), S188-S197. https://doi.org/10.1016/j.bjorl.2022.01.004
Caples, S. M., Anderson, W. M., Calero, K., Howell, M., & Hashmi, S. D. (2021). Use of polysomnography and home sleep apnea tests for the longitudinal management of obstructive sleep apnea in adults: an American Academy of Sleep Medicine clinical guidance statement. Journal of Clinical Sleep Medicine, 17(6), 1287-1293. https://doi.org/10.5664/jcsm.9240
Castillo-Escario, Y., Ferrer-Lluis, I., Montserrat, J. M., & Jané, R. (2022). Automatic detection of sleep apnea from smartphone-recorded audio signals using convolutional neural networks. IEEE Access, 10, 85019-85031. https://doi.org/10.1109/EMBC48229.2022.9871396
Chen, X., Xiao, Y., Tang, Y., Fernandez-Mendoza, J., & Cao, G. (2021). ApneaDetector: Detecting sleep apnea with smartwatches. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 5(2), Article 59. https://doi.org/10.1145/3463514
Chen, Y., Wang, W., Guo, Y., Zhang, H., Chen, Y., & Xie, L. (2021). A single-center validation of the accuracy of a photoplethysmography-based smartwatch for screening obstructive sleep apnea. Nature and Science of Sleep, 13, 1533-1544. https://doi.org/10.2147/NSS.S323286
Concheiro-Moscoso, P., Pereira, J., Mosteiro-Añón, M., Torres-Durán, M., Casal-Guisande, M., & Groba, B. (2025). ReSTech project on Xiaomi wearable devices for monitoring and detecting obstructive sleep apnoea: observational study protocol. BMJ Open, 15(1), e101824. https://doi.org/10.1136/bmjopen-2025-101824
Dang, T. H., Kim, S., Choi, M., Hwan, S., Min, H., & Bien, F. (2025). An automated algorithm for obstructive sleep apnea detection using a wireless abdomen-worn sensor. Sensors, 25(3), 847. https://doi.org/10.3390/s25082412
de Zambotti, M., Cellini, N., Goldstone, A., Colrain, I. M., & Baker, F. C. (2019). Wearable sleep technology in clinical and research settings. Medicine & Science in Sports & Exercise, 51(7), 1538-1557. https://doi.org/10.1249/MSS.0000000000001947
Gu, W., Leung, L., Kwok, K. C., Wu, I. C., Folz, R. J., & Chiang, A. A. (2020). Belun Ring Platform: a novel home sleep apnea testing system for assessment of obstructive sleep apnea. Journal of Clinical Sleep Medicine, 16(9), 1611-1617. https://doi.org/10.5664/jcsm.8592
Guyot, P., Eveilleau, M., Bastogne, T., Ayav, C., Carpentier, N., & Chenuel, B. (2025). Robust performances of a nocturnal long-term ECG algorithm for the evaluation of sleep apnea syndrome: A pilot study. PLOS ONE, 20(5), e0318622. https://doi.org/10.1371/journal.pone.0318622
Hayano, J., Yamamoto, H., Nonaka, I., Komazawa, M., Itao, K., Ueda, N., Tanaka, H., & Yuda, E. (2020). Quantitative detection of sleep apnea with wearable watch device. PLOS ONE, 15(11), e0237279. https://doi.org/10.1371/journal.pone.0237279
Hung, C. J., Kang, B. H., Lin, Y. S., & Su, H. H. (2022). Comparison of a home sleep test with in-laboratory polysomnography in the diagnosis of obstructive sleep apnea syndrome. Journal of Chinese Medical Association, 85, 788-792. https://doi.org/10.1097/JCMA.0000000000000741
Kim, D. H., Kim, S. W., & Hwang, S. H. (2022). Diagnostic value of smartphone in obstructive sleep apnea syndrome: A systematic review and meta-analysis. PLOS ONE, 17(5), e0268585. https://doi.org/10.1371/journal.pone.0268585
Li, C. X., Zhang, Y. F., Zhu, Z., Lu, F. Y., Wang, Y., Zhang, L. Y., Li, N., Sun, X. W., & Li, Q. Y. (2023). Diagnosis of obstructive sleep apnea using a bio-radar contact-free system compared with an established HST device in older adults. Sleep Health, 9(3), 381-386. https://doi.org/10.1016/j.sleh.2023.01.001
Manoni, A., Loreti, F., Radicioni, V., Pellegrino, D., Della Torre, L., Gumiero, A., Halicki, D., Palange, P., & Irrera, F. (2020). A new wearable system for home sleep apnea testing, screening, and classification. Sensors, 20(24), 7014. https://doi.org/10.3390/s20247014
McMahon, M., Goldin, J., Kealy, E. S., Wicks, D. J., Zilberg, E., Freeman, W., & Aliahmad, B. (2024). Evaluating Somfit's pulse arterial tonometry for detection of obstructive sleep apnoea. Sleep and Biological Rhythms, 23(2), 145-152. https://doi.org/10.1007/s41105-024-00559-4.
Meng, L., Xu, H., Guan, J., Yi, H., Wu, H., & Yin, S. (2016). Validation of a novel sleep-monitoring system for diagnosing obstructive sleep apnea: A comparison with polysomnography. Experimental and Therapeutic Medicine, 12(5), 2937-2941. https://doi.org/10.3892/etm.2016.3721
Mokhtaran, M., Sacchi, L., Tibollo, V., Risi, I., Ramella, V., Quaglini, S., & Fanfulla, F. (2021). Obstructive sleep apnea home-monitoring using a commercial wearable device. Studies in Health Technology and Informatics, 281, 522-526. https://doi.org/ 10.3233/SHTI220131
Mosquera-Lopez, C., Leitschuh, J., Rajhbeharrysingh, U., Hanks, C., Jacobs, P. G., Condon, J., & Hagen, C. C. (2019). Design and evaluation of a non-contact bed-mounted sensing device for automated in-home detection of obstructive sleep apnea: A pilot study. Biosensors, 9(3), 90. https://doi.org/10.3390/bios9030090
Narayan, S., Shivdare, P., Niranjan, T., Williams, K., Freudman, J., & Sehra, R. (2019). Noncontact identification of sleep-disturbed breathing from smartphone-recorded sounds validated by polysomnography. Sleep and Breathing, 23(1), 269-279. https://doi.org/10.1007/s11325-018-1695-6
Osa-Sanchez, A., Garcia-Zapirain, B., Ramos-Martinez-de-Soria, J., Mendez-Zorrilla, A., & Oleagordia Ruiz, I. (2025). Wearable sensors and artificial intelligence for sleep apnea detection: A systematic review. Journal of Medical Systems, 49(1), 66. https://doi.org/10.1007/s10916-025-02199-8
Papini, G. B., Fonseca, P., van Gilst, M. M., Bergmans, J. W. M., Vullings, R., & Overeem, S. (2020). Wearable monitoring of sleep-disordered breathing: estimation of the apnea-hypopnea index using wrist-worn reflective photoplethysmography. Scientific Reports, 10(1), 13512. https://doi.org/10.1038/s41598-020-69935-7
Peng, M., Zhang, Y., Zhao, R., Li, J., Zhang, X., Deng, L., Zhao, L., Zhou, B., Wang, X., Dong, X., & Han, F. (2025). Diagnostic accuracy of the Alice NightOne single-belt monitor for obstructive sleep apnea and reliability of wireless data transfer. Nature and Science of Sleep, 17, 1493-1505. https://doi.org/10.2147/NSS.S527805
Roman Rosado, Y. D., Somayaji, M., Stefanovski, D., Uwah, E. A., Ward, M., Tapia, I. E., Galion, A., DelRosso, L. M., Davidson Ward, S. L., & Cielo, C. M. (2025). Randomised trial of home sleep apnoea testing compared to in-lab polysomnography for the evaluation of obstructive sleep apnoea in children: rationale and study protocol. BMJ Open, 15(1), e103315. https://doi.org/10.1136/bmjopen-2025-103315
Rosa, T., Bellardi, K., Viana Jr, A., Ma, Y., & Capasso, R. (2018). Digital health and sleep-disordered breathing: A systematic review and meta-analysis. Journal of Clinical Sleep Medicine, 14(10), 1749-1763. http://dx.doi.org/10.5664/jcsm.7346
Sadek, I., Tan Soon Heng, T., Seet, E., & Abdulrazak, B. (2020). A new approach for detecting sleep apnea using a contactless bed sensor: comparison study. Journal of Medical Internet Research, 22(9), e18297. https://doi.org/10.2196/18297
Tirachaimongkol, V., Banhiran, W., Pimolsri, C., Srikajon, J., Chotinaiwattarakul, W., Kasemsuk, N., & Rungmanee, S. (2025). Belun Sleep Platform versus in-lab polysomnography for obstructive sleep apnea diagnosis. Sleep and Breathing, 29(1), 266. https://doi.org/10.1007/s11325-025-03433-w
Tiron, R., Lyon, G., Kilroy, H., Osman, A., Kelly, N., O'Mahony, N., Lopes, C., Coffey, S., McMahon, S., Wren, M., Conway, K., Fox, N., Costello, J., Shouldice, R., Lederer, K., Fietze, I., & Penzel, T. (2020). Screening for obstructive sleep apnea with novel hybrid acoustic smartphone app technology. Journal of Thoracic Disease, 12(8), 4476-4495. http://dx.doi.org/10.21037/jtd-20-804
Wang, B., Tang, X., Ai, H., Li, Y., Xu, W., Wang, X., & Han, D. (2022). Obstructive sleep apnea detection based on sleep sounds via deep learning. Nature and Science of Sleep, 14, 1887-1898. https://doi.org/10.2147/NSS.S373367
Wang, J., Zhang, Z., Wang, Q., Wen, L., Liu, J., Gu, C., Xiao, P., Fang, Z., & Li, Y. (2025). Comparative accuracy of millimeter-wave radar and polysomnography in sleep apnea detection. Medical Science Monitor, 31, e948079. https://doi.org/10.12659/MSM.948079
Xu, Y., Ou, Q., Cheng, Y., Lao, M., & Pei, G. (2021). Comparative study of a wearable intelligent sleep monitor and polysomnography monitor for the diagnosis of obstructive sleep apnea. Sleep and Breathing, 27(1), 205-212. https://doi.org/10.1007/s11325-022-02599-x
Yeh, E., Wong, E., Tsai, C. W., Gu, W., Chen, P. L., Leung, L., Wu, I. C., Folz, R. J., Yar, W., Chiang, A. A., & Strohl, K. P. (2021). Detection of obstructive sleep apnea using Belun Sleep Platform wearable with neural network-based algorithm and its combined use with STOP-Bang questionnaire. PLOS ONE, 16(10), e0258040. https://doi.org/10.1371/journal.pone.0258040
Zhang, H., Chen, X., Bo, S., Zhang, X., Wang, P., Du, L., Li, Z., Wu, P., Jiang, L., & Fang, Z. (2025). Event-level identification of sleep apnea using FMCW radar. Sensors, 25(2), 456. https://doi.org/10.3390/bioengineering12040399
Zhao, R., Xue, J., Dong, X. S., Zhi, H., Chen, J., Zhao, L., Zhang, X., Li, J., Penzel, T., & Han, F. (2021). Screening for obstructive sleep apnea using a contact-free system compared with polysomnography. Journal of Clinical Sleep Medicine, 17(5), 1075-1082. https://doi.org/10.5664/jcsm.9138
Views:
24
Downloads:
17
Copyright (c) 2025 Oliwia Sójkowska-Sławińska, Tobiasz Sławiński, Anna Leśniewska, Patryk Macuk, Natalia Rutecka

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.