DEMENTIA – DIFFERENTIATION AND THE SIGNIFICANCE OF EARLY DIAGNOSIS

Keywords: Dementia, Alzheimer's Disease, Vascular Dementia, Lewy Body Dementia, Frontotemporal Dementia

Abstract

Dementias are a complex group of neurodegenerative diseases characterized by a progressive decline in cognitive functions, significantly affecting patients' daily lives. Differentiating between types of dementia, such as Alzheimer’s disease, vascular dementia, Lewy body dementia, and frontotemporal dementia, is essential for appropriate therapy planning, disease prognosis, and optimizing care.

Diagnosis is based on a comprehensive assessment of clinical symptoms, neuroimaging studies, and analysis of fluid biomarkers. Clinical symptoms, such as memory impairment, attention deficits, executive dysfunction, and behavioral changes, are the basis of diagnosis; however, differentiation requires support from brain imaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET), which allow the identification of characteristic structural and metabolic changes. Biomarkers, particularly tau and beta-amyloid proteins measured in cerebrospinal fluid and serum, are important tools for confirming the diagnosis and monitoring disease progression.

Early diagnosis of dementia is crucial for the effectiveness of therapy and improving patients’ quality of life. It enables the implementation of interventions that slow disease progression and provides appropriate psychosocial support for patients and their families.

In recent years, artificial intelligence (AI) has played an increasing role in the diagnosis of dementia. Advanced algorithms analyzing clinical, neuroimaging, and biomarker data support more accurate and faster differentiation of dementia types and help identify at-risk individuals at early disease stages. The implementation of AI in clinical practice opens new opportunities for personalized treatment and patient care.

References

World Health Organization. (2016). International statistical classification of diseases and related health problems: 10th revision (ICD-10). World Health Organization.

Alzheimer’s Disease International. (n.d.). Numbers of people with dementia worldwide. https://www.alzint.org/resource/numbers-of-people-with-dementia-worldwide/ (accessed May 2, 2025)

World Health Organization. (n.d.). Dementia fact sheet. https://www.who.int/news-room/fact-sheets/detail/dementia (accessed May 2, 2025)

Gałecki, J. (Ed.). (2021). Psychiatria. PZWL.

Zheng, Q., & Wang, X. (2025). Alzheimer's disease: Insights into pathology, molecular mechanisms, and therapy. Protein & Cell, 16(2), 83–120. https://doi.org/10.1093/procel/pwae026

Sharma, C., Kim, S., Nam, Y., Jung, U. J., & Kim, S. R. (2021). Mitochondrial dysfunction as a driver of cognitive impairment in Alzheimer's disease. International Journal of Molecular Sciences, 22(9), 4850. https://doi.org/10.3390/ijms22094850

Rostagno, A. A. (2022). Pathogenesis of Alzheimer's disease. International Journal of Molecular Sciences, 24(1), 107. https://doi.org/10.3390/ijms24010107

Meade, R. M., Fairlie, D. P., & Mason, J. M. (2019). Alpha-synuclein structure and Parkinson’s disease – lessons and emerging principles. Molecular Neurodegeneration, 14, 29. https://doi.org/10.1186/s13024-019-0329-1

Mehra, S., Gadhe, L., Bera, R., Sawner, A. S., & Maji, S. K. (2021). Structural and functional insights into α-synuclein fibril polymorphism. Biomolecules, 11(10), 1419. https://doi.org/10.3390/biom11101419

Prasad, S., Katta, M. R., Abhishek, S., et al. (2023). Recent advances in Lewy body dementia: A comprehensive review. Disease-a-Month, 69(5), 101441. https://doi.org/10.1016/j.disamonth.2022.101441

Olney, N. T., Spina, S., & Miller, B. L. (2017). Frontotemporal dementia. Neurologic Clinics, 35(2), 339–374. https://doi.org/10.1016/j.ncl.2017.01.008

Antonioni, A., Raho, E. M., Lopriore, P., et al. (2023). Frontotemporal dementia, where do we stand? A narrative review. International Journal of Molecular Sciences, 24(14), 11732. https://doi.org/10.3390/ijms241411732

Skrobot, O. A., O'Brien, J., Black, S., et al.; VICCCS group; Ben-Shlomo, Y., Passmore, A. P., Love, S., & Kehoe, P. G. (2017). The vascular impairment of cognition classification consensus study. Alzheimer’s & Dementia, 13(6), 624–633. https://doi.org/10.1016/j.jalz.2016.10.007

Altahrawi, A. Y., James, A. W., & Shah, Z. A. (2025). The role of oxidative stress and inflammation in the pathogenesis and treatment of vascular dementia. Cells, 14(8), 609. https://doi.org/10.3390/cells14080609

Lecordier, S., Manrique-Castano, D., El Moghrabi, Y., & ElAli, A. (2021). Neurovascular alterations in vascular dementia: Emphasis on risk factors. Frontiers in Aging Neuroscience, 13, 727590. https://doi.org/10.3389/fnagi.2021.727590

Niotis, K., Akiyoshi, K., Carlton, C., & Isaacson, R. (2022). Dementia prevention in clinical practice. Seminars in Neurology, 42(5), 525–548. https://doi.org/10.1055/s-0042-1759580

Jack, C. R. Jr., Knopman, D. S., Jagust, W. J., et al. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. The Lancet Neurology, 9(1), 119–128. https://doi.org/10.1016/S1474-4422(09)70299-6

Taylor, J. P., McKeith, I. G., Burn, D. J., et al. (2020). New evidence on the management of Lewy body dementia. The Lancet Neurology, 19(2), 157–169. https://doi.org/10.1016/S1474-4422(19)30153-X

Puppala, G. K., Gorthi, S. P., Chandran, V., & Gundabolu, G. (2021). Frontotemporal dementia – current concepts. Neurology India, 69(5), 1144–1152. https://doi.org/10.4103/0028-3886.329593

Chang Wong, E., & Chang Chui, H. (2022). Vascular cognitive impairment and dementia. Continuum (Minneap Minn), 28(3), 750–780. https://doi.org/10.1212/CON.0000000000001124

Arevalo-Rodriguez, I., Smailagic, N., Roqué-Figuls, M., et al. (2021). Mini-Mental State Examination (MMSE) for the early detection of dementia in people with mild cognitive impairment (MCI). Cochrane Database of Systematic Reviews, 7(7), CD010783. https://doi.org/10.1002/14651858.CD010783.pub3

Davis, D. H., Creavin, S. T., Yip, J. L., Noel-Storr, A. H., Brayne, C., & Cullum, S. (2021). Montreal Cognitive Assessment for the detection of dementia. Cochrane Database of Systematic Reviews, 7(7), CD010775. https://doi.org/10.1002/14651858.CD010775.pub3

Tsoy, E., Sideman, A. B., Piña Escudero, S. D., et al. (2021). Global perspectives on brief cognitive assessments for dementia diagnosis. Journal of Alzheimer's Disease, 82(3), 1001–1013. https://doi.org/10.3233/JAD-201403

Maeshima, S., Osawa, A., Kawamura, K., et al. (2024). Neuropsychological tests used for dementia assessment in Japan: Current status. Geriatrics & Gerontology International, 24(Suppl 1), 102–109. https://doi.org/10.1111/ggi.14678

Lee, S. C., Chien, T. H., Chu, C. P., Lee, Y., & Chiu, E. C. (2023). Practice effect and test-retest reliability of the Wechsler Memory Scale-Fourth Edition in people with dementia. BMC Geriatrics, 23(1), 209. https://doi.org/10.1186/s12877-023-03913-2

Wang, C., Li, K., Huang, S., et al. (2025). Differential cognitive functioning in the digital clock drawing test in AD-MCI and PD-MCI populations. Frontiers in Neuroscience, 19, 1558448. https://doi.org/10.3389/fnins.2025.1558448

Schejter-Margalit, T., Kizony, R., Shirvan, J., et al. (2021). Quantitative digital clock drawing test as a sensitive tool to detect subtle cognitive impairments in early stage Parkinson's disease. Parkinsonism & Related Disorders, 90, 84–89. https://doi.org/10.1016/j.parkreldis.2021.08.002

Li, R. X., Ma, Y. H., Tan, L., & Yu, J. T. (2022). Prospective biomarkers of Alzheimer's disease: A systematic review and meta-analysis. Ageing Research Reviews, 81, 101699. https://doi.org/10.1016/j.arr.2022.101699

McDonnell, M., Dill, L., Panos, S., et al. (2020). Verbal fluency as a screening tool for mild cognitive impairment. International Psychogeriatrics, 32(9), 1055–1062. https://doi.org/10.1017/S1041610219000644

Kopp, B., Lange, F., & Steinke, A. (2021). The reliability of the Wisconsin Card Sorting Test in clinical practice. Assessment, 28(1), 248–263. https://doi.org/10.1177/1073191119866257

Aljuhani, M., Ashraf, A., & Edison, P. (2024). Use of artificial intelligence in imaging dementia. Cells, 13(23), 1965. https://doi.org/10.3390/cells13231965

Frisoni, G. B., Bocchetta, M., Chételat, G., et al.; ISTAART's NeuroImaging Professional Interest Area. (2013). Imaging markers for Alzheimer disease: Which vs how. Neurology, 81(5), 487–500. https://doi.org/10.1212/WNL.0b013e31829d86e8

Furtner, J., & Prayer, D. (2021). Neuroimaging in dementia. Wiener Medizinische Wochenschrift, 171(11–12), 274–281. https://doi.org/10.1007/s10354-021-00825-x

Dubois, B., von Arnim, C. A. F., Burnie, N., Bozeat, S., & Cummings, J. (2023). Biomarkers in Alzheimer's disease: Role in early and differential diagnosis and recognition of atypical variants. Alzheimer’s Research & Therapy, 15(1), 175. https://doi.org/10.1186/s13195-023-01314-6

McKeith, I. G., Boeve, B. F., Dickson, D. W., et al. (2017). Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology, 89(1), 88–100. https://doi.org/10.1212/WNL.0000000000004058

Pressman, P. S., & Miller, B. L. (2014). Diagnosis and management of behavioral variant frontotemporal dementia. Biological Psychiatry, 75(7), 574–581. https://doi.org/10.1016/j.biopsych.2013.11.006

Aljuhani, M., Ashraf, A., & Edison, P. (2024). Use of artificial intelligence in imaging dementia. Cells, 13(23), 1965. https://doi.org/10.3390/cells13231965

Avberšek, L. K., & Repovš, G. (2022). Deep learning in neuroimaging data analysis: Applications, challenges, and solutions. Frontiers in Neuroimaging, 1, 981642. https://doi.org/10.3389/fnimg.2022.981642

Views:

30

Downloads:

12

Published
2025-09-30
Citations
How to Cite
Joanna Mazurek, Wojciech Gąska, Ignacy Rożek, Izabela Lekan, Agnieszka Brzezińska, Weronika Tuszyńska, Alicja Sodolska, Michał Lenart, Barbara Madoń, & Barbara Teresińska. (2025). DEMENTIA – DIFFERENTIATION AND THE SIGNIFICANCE OF EARLY DIAGNOSIS. International Journal of Innovative Technologies in Social Science, 5(3(47). https://doi.org/10.31435/ijitss.3(47).2025.3735

Most read articles by the same author(s)