MICROBES IN YOUR MOUTH: THE HIDDEN PLAYERS IN HEALTH, SICKNESS, AND TOMORROW'S CURES
Abstract
Background: The oral microbiome holds a unique position among human microbial communities, featuring over 700 bacterial species along with fungi, viruses, archaea, and protozoa distributed across distinct ecological niches. Development begins prenatally and undergoes significant childhood transitions as tooth eruption creates new colonization sites. Multiple factors shape oral microbial communities, including host genetics, delivery mode, diet, smoking, oral hygiene, alcohol consumption, and antibiotic use.
Aim: This study aimed to comprehensively review the oral microbiome's complexity, development patterns, influencing factors, and associations with oral and systemic diseases.
Materials and Methods: A comprehensive literature review examined current evidence on oral microbiome composition, development, influencing factors, and disease associations.
Results: Oral microbiome dysbiosis manifests through reduced microbial diversity, depletion of beneficial organisms, and pathogenic species proliferation, contributing to dental caries, periodontal disease, and oropharyngeal cancers. Growing evidence links dysbiosis to systemic conditions including Alzheimer's disease, diabetes, cardiovascular diseases, and colorectal cancers through bacterial translocation and inflammatory pathways. The oral cavity's accessibility enables non-invasive sampling and development of microbial biomarkers for early disease detection.
Conclusions: This review highlights microbiome-focused interventions' potential to address disease at microbial roots rather than treating symptoms, creating cascading positive effects throughout the body. As the gateway to human health, the oral microbiome represents a critical frontier in modern medicine deserving increased research attention and investment.
References
Yamashita, Y. and T. Takeshita, The oral microbiome and human health. J Oral Sci, 2017. 59(2): p. 201-206.https://doi.org/10.2334/josnusd.16-0856
Lane, N., The unseen world: reflections on Leeuwenhoek (1677)‘Concerning little animals’. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015. 370(1666): p. 20140344.https://doi.org/10.1098/rstb.2014.0344
Baker, J.L., et al., The oral microbiome: diversity, biogeography and human health. Nat Rev Microbiol, 2024. 22(2): p. 89-104.https://doi.org/10.1038/s41579-023-00963-6
Lim, Y., et al., Oral microbiome: a new biomarker reservoir for oral and oropharyngeal cancers. Theranostics, 2017. 7(17): p. 4313.https://doi.org/10.7150/thno.21804
Santacroce, L., et al., Oral microbiota in human health and disease: A perspective. Experimental Biology and Medicine, 2023. 248(15): p. 1288-1301.https://doi.org/10.1177/15353702231187645
Mark Welch, J.L., F.E. Dewhirst, and G.G. Borisy, Biogeography of the oral microbiome: the site-specialist hypothesis. Annual review of microbiology, 2019. 73(1): p. 335-358.https://doi.org/10.1146/annurev-micro-090817-062503
Mark Welch, J.L., S.T. Ramírez-Puebla, and G.G. Borisy, Oral Microbiome Geography: Micron-Scale Habitat and Niche. Cell Host Microbe, 2020. 28(2): p. 160-168.https://doi.org/10.1016/j.chom.2020.07.009
McLean, A.R., et al., Site‐tropism of streptococci in the oral microbiome. Molecular oral microbiology, 2022. 37(6): p. 229-243.https://doi.org/10.1111/omi.12387
Diaz, P. and A. Dongari-Bagtzoglou, Critically appraising the significance of the oral mycobiome. Journal of Dental Research, 2021. 100(2): p. 133-140.https://doi.org/10.1177/0022034520956975
Diaz, P.I., et al., Mining the oral mycobiome: methods, components, and meaning. Virulence, 2017. 8(3): p. 313-323.https://doi.org/10.1080/21505594.2016.1252015
Ghannoum, M.A., et al., Characterization of the Oral Fungal Microbiome (Mycobiome) in Healthy Individuals. PLoS Pathogens, 2010. 6(1): p. e1000713.https://doi.org/10.1371/journal.ppat.1000713
Hong, B.-Y., et al., The salivary mycobiome contains 2 ecologically distinct mycotypes. Journal of dental research, 2020. 99(6): p. 730-738.https://doi.org/10.1177/0022034520915879
Ahmad, K.M., et al., Genome structure and dynamics of the yeast pathogen Candida glabrata. FEMS yeast research, 2014. 14(4): p. 529-535.https://doi.org/10.1111/1567-1364.12145
Turner, S.A. and G. Butler, The Candida pathogenic species complex. Cold Spring Harbor perspectives in medicine, 2014. 4(9): p. a019778.https://doi.org/10.1101/cshperspect.a019778
Gabaldón, T., et al., Comparative genomics of emerging pathogens in the Candida glabrata clade. BMC genomics, 2013. 14: p. 1-16.https://doi.org/10.1186/1471-2164-14-623
Dupuy, A.K., et al., Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: discovery of Malassezia as a prominent commensal. PLoS One, 2014. 9(3): p. e90899.https://doi.org/10.1371/journal.pone.0090899
Bao, X., et al., Entamoeba gingivalis exerts severe pathogenic effects on the oral mucosa. Journal of Dental Research, 2021. 100(7): p. 771-776.https://doi.org/10.1177/00220345211004498
Bao, X., et al., Entamoeba gingivalis causes oral inflammation and tissue destruction. Journal of dental research, 2020. 99(5): p. 561-567.https://doi.org/10.1177/0022034520901738
Bonner, M., et al., Reassessing the Role of Entamoeba gingivalis in Periodontitis. Frontiers in cellular and infection microbiology, 2018. 8: p. 379.https://doi.org/10.3389/fcimb.2018.00379
Belmok, A., et al., The oral archaeome: a scoping review. Journal of Dental Research, 2020. 99(6): p. 630-643.https://doi.org/10.1177/0022034520910435
Lepp, P.W., et al., Methanogenic Archaea and human periodontal disease. Proceedings of the national academy of sciences, 2004. 101(16): p. 6176-6181.https://doi.org/10.1073/pnas.0308766101
García, G., et al., A new subtype of Entamoeba gingivalis:“E. gingivalis ST2, kamaktli variant”. Parasitology research, 2018. 117: p. 1277-1284.https://doi.org/10.1007/s00436-018-5798-6
Deng, Z.-L., et al., Dysbiosis in chronic periodontitis: key microbial players and interactions with the human host. Scientific reports, 2017. 7(1): p. 3703.https://doi.org/10.1038/s41598-017-03804-8
Vianna, M., et al., Quantitative analysis of three hydrogenotrophic microbial groups, methanogenic archaea, sulfate-reducing bacteria, and acetogenic bacteria, within plaque biofilms associated with human periodontal disease. Journal of bacteriology, 2008. 190(10): p. 3779-3785.https://doi.org/10.1128/jb.01861-07
Camargo, A.P., et al., IMG/VR v4: an expanded database of uncultivated virus genomes within a framework of extensive functional, taxonomic, and ecological metadata. Nucleic acids research, 2023. 51(D1): p. D733-D743.https://doi.org/10.1093/nar/gkac1037
Münch, P.C., et al., Identification of natural CRISPR systems and targets in the human microbiome. Cell host & microbe, 2021. 29(1): p. 94-106. e4.https://doi.org/10.1016/j.chom.2020.10.010
Yahara, K., et al., Long-read metagenomics using PromethION uncovers oral bacteriophages and their interaction with host bacteria. Nature communications, 2021. 12(1): p. 27.https://doi.org/10.1038/s41467-020-20199-9
Matrishin, C.B., et al., Phages are unrecognized players in the ecology of the oral pathogen Porphyromonas gingivalis. Microbiome, 2023. 11(1).https://doi.org/10.1186/s40168-023-01607-w
Jahn, M.T., et al., A phage protein aids bacterial symbionts in eukaryote immune evasion. Cell Host & Microbe, 2019. 26(4): p. 542-550. e5.https://doi.org/10.1016/j.chom.2019.08.019
Tylenda, C.A., et al., Simultaneous loss of bacteriophage receptor and coaggregation mediator activities in Actinomyces viscosus MG-1. Infection and immunity, 1985. 48(1): p. 228-233.https://doi.org/10.1128/iai.48.1.228-233.1985
Chibani, C.M., et al., A catalogue of 1,167 genomes from the human gut archaeome. Nature microbiology, 2022. 7(1): p. 48-61.https://doi.org/10.1038/s41564-021-01020-9
Kinsella, C.M., et al., Entamoeba and Giardia parasites implicated as hosts of CRESS viruses. Nature communications, 2020. 11(1): p. 4620.https://doi.org/10.1038/s41467-020-18474-w
Rada, P., et al., Double-stranded RNA viruses are released from Trichomonas vaginalis inside small extracellular vesicles and modulate the exosomal cargo. Frontiers in microbiology, 2022. 13: p. 893692.https://doi.org/10.3389/fmicb.2022.893692
Graves, K., et al., Trichomonas vaginalis virus: a review of the literature. International journal of STD & AIDS, 2019. 30(5): p. 496-504.https://doi.org/10.1177/0956462418809767
Park, M., et al., A novel virus alters gene expression and vacuolar morphology in Malassezia cells and induces a TLR3-mediated inflammatory immune response. Mbio, 2020. 11(5): p. 10.1128/mbio. 01521-20.https://doi.org/10.1128/mbio.01521-20
Abbas, A.A., et al., Redondoviridae, a family of small, circular DNA viruses of the human oro-respiratory tract associated with periodontitis and critical illness. Cell host & microbe, 2019. 25(5): p. 719-729. e4.https://doi.org/10.1016/j.chom.2019.04.001
Keeler, E.L., et al., Widespread, human-associated redondoviruses infect the commensal protozoan Entamoeba gingivalis. Cell host & microbe, 2023. 31(1): p. 58-68. e5.https://doi.org/10.1016/j.chom.2022.11.002
Liang, G. and F.D. Bushman, The human virome: assembly, composition and host interactions. Nature Reviews Microbiology, 2021. 19(8): p. 514-527.https://doi.org/10.1038/s41579-021-00536-5
Diaz, P.I., Subgingival fungi, Archaea, and viruses under the omics loupe. Periodontology 2000, 2021. 85(1): p. 82-89.https://doi.org/10.1177/0022034520956975
Virgin, H.W., E.J. Wherry, and R. Ahmed, Redefining chronic viral infection. Cell, 2009. 138(1): p. 30-50.https://doi.org/10.1016/j.cell.2009.06.036
Kaczorowska, J. and L. Van Der Hoek, Human anelloviruses: diverse, omnipresent and commensal members of the virome. FEMS Microbiology Reviews, 2020. 44(3): p. 305-313.https://doi.org/10.1093/femsre/fuaa007
Bearfield, C., et al., Possible association between amniotic fluid micro-organism infection and microflora in the mouth. Bjog, 2002. 109(5): p. 527-33.https://doi.org/10.1016/S1470-0328(02)01349-6
Xiao, J., K.A. Fiscella, and S.R. Gill, Oral microbiome: possible harbinger for children's health. Int J Oral Sci, 2020. 12(1): p. 12.https://doi.org/10.1038/s41368-020-0082-x
Aagaard, K., et al., The Placenta Harbors a Unique Microbiome. Science Translational Medicine, 2014. 6(237): p. 237ra65-237ra65. https://doi.org/10.1126/scitranslmed.3008599
Dzidic, M., et al., Oral microbiome development during childhood: an ecological succession influenced by postnatal factors and associated with tooth decay. The ISME Journal, 2018. 12(9): p. 2292-2306.https://doi.org/10.1038/s41396-018-0204-z
Marsh, P.D., Role of the oral microflora in health. Microbial ecology in health and disease, 2000. 12(3): p. 130-137.https://doi.org/10.1080/089106000750051800
Crielaard, W., et al., Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Medical Genomics, 2011. 4(1): p. 22.https://doi.org/10.1186/1755-8794-4-22
Stecksén-Blicks, C., et al., Prevalence of oral Candida in the first year of life. Mycoses, 2015. 58(9): p. 550-6. https://doi.org/10.1111/myc.12355
Ward, T.L., et al., Development of the Human Mycobiome over the First Month of Life and across Body Sites. mSystems, 2018. 3(3).https://doi.org/10.1128/msystems.00140-17
Pride, D.T., et al., Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome. The ISME Journal, 2012. 6(5): p. 915-926. https://doi.org/10.1038/ismej.2011.169
Parras-Moltó, M., et al., Genome Sequence of Two Novel Species of Torque Teno Minivirus from the Human Oral Cavity. Genome Announcements, 2014. 2(5): p. e00868-14-e0086.https://doi.org/10.1128/genomea.00868-14
Corstjens, P.L., W.R. Abrams, and D. Malamud, Saliva and viral infections. Periodontol 2000, 2016. 70(1): p. 93-110. https://doi.org/10.1111/prd.12112
Mahnert, N., et al., The incidence of neonatal herpes infection. Am J Obstet Gynecol, 2007. 196(5): p. e55-6.https://doi.org/10.1016/j.ajog.2006.10.911
Pinninti, S.G. and D.W. Kimberlin, Neonatal herpes simplex virus infections. Semin Perinatol, 2018. 42(3): p. 168-175.https://doi.org/10.1053/j.semperi.2018.02.004
Sällberg, M., Oral viral infections of children. Periodontol 2000, 2009. 49: p. 87-95.https://doi.org/10.1111/j.1600-0757.2008.00277.x.
Demmitt, B.A., et al., Genetic influences on the human oral microbiome. BMC Genomics, 2017. 18(1).https://doi.org/10.1186/s12864-017-4008-8
Gomez, A., et al., Host Genetic Control of the Oral Microbiome in Health and Disease. Cell Host & Microbe, 2017. 22(3): p. 269-278.e3.https://doi.org/10.1016/j.chom.2017.08.013
Dominguez-Bello, M.G., et al., Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences, 2010. 107(26): p. 11971-11975.https://doi.org/10.1073/pnas.1002601107
Timby, N., et al., Oral Microbiota in Infants Fed a Formula Supplemented with Bovine Milk Fat Globule Membranes - A Randomized Controlled Trial. PLOS ONE, 2017. 12(1): p. e0169831.https://doi.org/10.1371/journal.pone.0169831
Ferretti, P., et al., Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome. Cell Host & Microbe, 2018. 24(1): p. 133-145.e5.https://doi.org/10.1016/j.chom.2018.06.005
Mason, M.R., et al., Characterizing oral microbial communities across dentition states and colonization niches. Microbiome, 2018. 6(1).https://doi.org/10.1186/s40168-018-0443-2
Petersen, C. and J.L. Round, Defining dysbiosis and its influence on host immunity and disease. Cellular microbiology, 2014. 16(7): p. 1024-1033.https://doi.org/10.1111/cmi.12308
Takeshita, T., et al., Bacterial diversity in saliva and oral health-related conditions: the Hisayama Study. Scientific reports, 2016. 6(1): p. 22164.https://doi.org/10.1038/srep22164
Santonocito, S., et al., A Cross-Talk between Diet and the Oral Microbiome: Balance of Nutrition on Inflammation and Immune System’s Response during Periodontitis. Nutrients, 2022. 14(12): p. 2426.https://doi.org/10.3390/nu14122426
Aas, J.A., et al., Defining the normal bacterial flora of the oral cavity. Journal of clinical microbiology, 2005. 43(11): p. 5721-5732.https://doi.org/10.1128/jcm.43.11.5721-5732.2005
Alhassani, A.A., et al., Dietary flavonoid intake and risk of periodontitis. Journal of periodontology, 2020. 91(8): p. 1057-1066.https://doi.org/10.1002/JPER.19-0463
Baker, J.L. and A. Edlund, Exploiting the oral microbiome to prevent tooth decay: has evolution already provided the best tools? Frontiers in microbiology, 2019. 9: p. 3323.https://doi.org/10.3389/fmicb.2018.03323
Moye, Z.D., L. Zeng, and R.A. Burne, Fueling the caries process: carbohydrate metabolism and gene regulation by Streptococcus mutans. Journal of oral microbiology, 2014. 6(1): p. 24878.https://doi.org/10.3402/jom.v6.24878
Klein, M., et al., Structural and molecular basis of the role of starch and sucrose in Streptococcus mutans biofilm development. Applied and Environmental Microbiology, 2009. 75(3): p. 837-841.https://doi.org/10.1128/AEM.01299-08
Takahashi, N., Oral microbiome metabolism: from “who are they?” to “what are they doing?”. Journal of dental research, 2015. 94(12): p. 1628-1637.https://doi.org/10.1177/0022034515606045
Hansen, T.H., et al., Impact of a vegan diet on the human salivary microbiota. Scientific reports, 2018. 8(1): p. 5847.https://doi.org/10.1038/s41598-018-24207-3
Takeshita, T., et al., Distinct composition of the oral indigenous microbiota in South Korean and Japanese adults. Scientific reports, 2014. 4(1): p. 6990.https://doi.org/10.1038/srep06990
De Filippis, F., et al., The same microbiota and a potentially discriminant metabolome in the saliva of omnivore, ovo-lacto-vegetarian and vegan individuals. PloS one, 2014. 9(11): p. e112373.https://doi.org/10.1371/journal.pone.0112373
Huang, C. and G. Shi, Smoking and microbiome in oral, airway, gut and some systemic diseases. J Transl Med, 2019. 17(1): p. 225.https://doi.org/10.1186/s12967-019-1971-7
Ertel, A., R. Eng, and S.M. Smith, The differential effect of cigarette smoke on the growth of bacteria found in humans. Chest, 1991. 100(3): p. 628-630.https://doi.org/10.1378/chest.100.3.628
Colman, G., et al., Cigarette smoking and the microbial flora of the mouth. Australian dental journal, 1976. 21(2): p. 111-118.https://doi.org/10.1111/j.1834-7819.1976.tb02833.x
Mason, M.R., et al., The subgingival microbiome of clinically healthy current and never smokers. The ISME journal, 2015. 9(1): p. 268-272.https://doi.org/10.1038/ismej.2014.114
Yuan, W., et al., Plant growth‐promoting and antibacterial activities of cultivable bacteria alive in tobacco field against Ralstonia solanacearum. Environmental Microbiology, 2022. 24(3): p. 1411-1429.https://doi.org/10.1111/1462-2920.15868
Vishwakarma, A. and D. Verma, Microorganisms: crucial players of smokeless tobacco for several health attributes. Applied Microbiology and Biotechnology, 2021. 105: p. 6123-6132.https://doi.org/10.1007/s00253-021-11460-2
Macgregor, I., Effects of smoking on oral ecology. A review of the literature. Clinical preventive dentistry, 1989. 11(1): p. 3-7
Hugoson, A. and M. Rolandsson, Periodontal disease in relation to smoking and the use of Swedish snus: epidemiological studies covering 20 years (1983–2003). Journal of clinical periodontology, 2011. 38(9): p. 809-816.https://doi.org/10.1111/j.1600-051X.2011.01749.x
Parahitiyawa, N., et al., Microbiology of odontogenic bacteremia: beyond endocarditis. Clinical microbiology reviews, 2009. 22(1): p. 46-64.https://doi.org/10.1128/cmr.00028-08
Kato, I., et al., Oral microbiome and history of smoking and colorectal cancer. Journal of epidemiological research, 2016. 2(2): p. 92.https://doi.org/10.5430/jer.v2n2p92
Hayes, R.B., et al., Association of oral microbiome with risk for incident head and neck squamous cell cancer. JAMA oncology, 2018. 4(3): p. 358-365.https://doi.org/10.1001/jamaoncol.2017.4777
Fan, X., et al., Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut, 2018. 67(1): p. 120-127.https://doi.org/10.1136/gutjnl-2016-312580
Peters, B.A., et al., Oral microbiome composition reflects prospective risk for esophageal cancers. Cancer research, 2017. 77(23): p. 6777-6787.https://doi.org/10.1158/0008-5472.CAN-17-1296
Kumar, P.S., Microbial dysbiosis: The root cause of periodontal disease. Journal of periodontology, 2021. 92(8): p. 1079-1087.https://doi.org/10.1002/JPER.21-0245
Abebe, G.M., Oral biofilm and its impact on oral health, psychological and social interaction. Int. J. Oral Dent. Health, 2021. 7: p. 127.https://doi.org/10.23937/2469-5734/1510127
Sälzer, S., et al., Contemporary practices for mechanical oral hygiene to prevent periodontal disease. Periodontology 2000, 2020. 84(1): p. 35-44.https://doi.org/10.1111/prd.12332
Chapple, I.L., et al., Primary prevention of periodontitis: managing gingivitis. Journal of clinical periodontology, 2015. 42: p. S71-S76.https://doi.org/10.1111/jcpe.12366
Pignatelli, P., et al., How periodontal disease and presence of nitric oxide reducing oral bacteria can affect blood pressure. International journal of molecular sciences, 2020. 21(20): p. 7538.https://doi.org/10.3390/ijms21207538
Gusberti, F.A., et al., Microbiological and clinical effects of chlorhexidine digluconate and hydrogen peroxide mouthrinses on developing plaque and gingivitis. Journal of clinical periodontology, 1988. 15(1): p. 60-67.https://doi.org/10.1111/j.1600-051X.1988.tb01556.x
Menendez, A., et al., Comparative analysis of the antibacterial effects of combined mouthrinses on Streptococcus mutans. Oral microbiology and immunology, 2005. 20(1): p. 31-34.https://doi.org/10.1111/j.1399-302X.2004.00189.x
Van Leeuwen, M., et al., Long‐term efficacy of a 0.07% cetylpyridinium chloride mouth rinse in relation to plaque and gingivitis: a 6‐month randomized, vehicle‐controlled clinical trial. International Journal of Dental Hygiene, 2015. 13(2): p. 93-103.https://doi.org/10.1111/idh.12082
Teng, F., et al., Cetylpyridinium chloride mouth rinses alleviate experimental gingivitis by inhibiting dental plaque maturation. International journal of oral science, 2016. 8(3): p. 182-190.https://doi.org/10.1038/ijos.2016.18
Fan, X., et al., Drinking alcohol is associated with variation in the human oral microbiome in a large study of American adults. Microbiome, 2018. 6: p. 1-15.https://doi.org/10.1186/s40168-018-0448-x
Muto, M., et al., Acetaldehyde production by non‐pathogenic Neisseria in human oral microflora: implications for carcinogenesis in upper aerodigestive tract. International journal of cancer, 2000. 88(3): p. 342-350.https://doi.org/10.1002/1097-0215(20001101)88:3<342::AID-IJC4>3.0.CO;2-I
Nosova, T., et al., Acetaldehyde production and metabolism by human indigenous and probiotic Lactobacillus and Bifidobacterium strains. Alcohol and Alcoholism, 2000. 35(6): p. 561-568. https://doi.org/10.1093/alcalc/35.6.561
Liao, Y., et al., The effects of alcohol drinking on oral microbiota in the Chinese population. International Journal of Environmental Research and Public Health, 2022. 19(9): p. 5729.https://doi.org/10.3390/ijerph19095729
Valles-Colomer, M., et al., Variation and transmission of the human gut microbiota across multiple familial generations. Nature microbiology, 2022. 7(1): p. 87-96.https://doi.org/10.1038/s41564-021-01021-8
Adeva-Andany, M., et al., Comprehensive review on lactate metabolism in human health. Mitochondrion, 2014. 17: p. 76-100.https://doi.org/10.1016/j.mito.2014.05.007
Drucker, S.D., Impact of Chewing Betel Nut on the Oral Microbiome. 2016, University of Illinois at Chicago.
Harvey, W., et al., Stimulation of human buccal mucosa fibroblasts in vitro by betel-nut alkaloids. Archives of oral biology, 1986. 31(1): p. 45-49.https://doi.org/10.1016/0003-9969(86)90112-3
Hoffman, N.W., J.-P. Wuarin, and F.E. Dudek, Whole-cell recordings of spontaneous synaptic currents in medial preoptic neurons from rat hypothalamic slices: mediation by amino acid neurotransmitters. Brain research, 1994. 660(2): p. 349-352.https://doi.org/10.1016/0006-8993(94)91312-9
Mangin, I., et al., Amoxicillin treatment modifies the composition of Bifidobacterium species in infant intestinal microbiota. Anaerobe, 2010. 16(4): p. 433-438.https://doi.org/10.1016/j.anaerobe.2010.06.005
Schumann, A., et al., Neonatal antibiotic treatment alters gastrointestinal tract developmental gene expression and intestinal barrier transcriptome. Physiological genomics, 2005. 23(2): p. 235-245.https://doi.org/10.1152/physiolgenomics.00057.2005
Russell, S.L., et al., Early life antibiotic‐driven changes in microbiota enhance susceptibility to allergic asthma. EMBO reports, 2012. 13(5): p. 440-447.https://doi.org/10.1038/embor.2012.32
Sekirov, I., et al., Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infection and immunity, 2008. 76(10): p. 4726-4736.https://doi.org/10.1128/iai.00319-08
Iliev, I.D., et al., Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science, 2012. 336(6086): p. 1314-1317.https://doi.org/10.1126/science.1221789
Gomez-Arango, L.F., et al., Antibiotic treatment at delivery shapes the initial oral microbiome in neonates. Scientific reports, 2017. 7(1): p. 43481.https://doi.org/10.1038/srep43481
Pitts, N., et al., Dental caries Nat Rev Dis Primers 3: 17030. 2017.
Banas, J.A. and D.R. Drake, Are the mutans streptococci still considered relevant to understanding the microbial etiology of dental caries? BMC oral health, 2018. 18: p. 1-8.https://doi.org/10.1186/s12903-018-0595-2
Baker, J.L., et al., Deep metagenomics examines the oral microbiome during dental caries, revealing novel taxa and co-occurrences with host molecules. Genome research, 2021. 31(1): p. 64-74.https://doi.org/10.1101/gr.265645.120
Simón-Soro, A. and A. Mira, Solving the etiology of dental caries. Trends in microbiology, 2015. 23(2): p. 76-82.https://doi.org/10.1016/j.tim.2014.10.010
Teng, F., et al., Prediction of early childhood caries via spatial-temporal variations of oral microbiota. Cell host & microbe, 2015. 18(3): p. 296-306.https://doi.org/10.1016/j.chom.2015.08.005
Agnello, M., et al., Microbiome associated with severe caries in Canadian first nations children. Journal of Dental Research, 2017. 96(12): p. 1378-1385.https://doi.org/10.1177/0022034517718819
Havsed, K., et al., Bacterial composition and metabolomics of dental plaque from adolescents. Frontiers in cellular and infection microbiology, 2021. 11: p. 716493.https://doi.org/10.3389/fcimb.2021.716493
Rosier, B., et al., Nitrate as a potential prebiotic for the oral microbiome. Scientific reports, 2020. 10(1): p. 12895.https://doi.org/10.1038/s41598-020-69931-x
Rosier, B.T., et al., The importance of nitrate reduction for oral health. Journal of dental research, 2022. 101(8): p. 887-897.https://doi.org/10.1177/00220345221080982
Darveau, R.P., Periodontitis: a polymicrobial disruption of host homeostasis. Nature reviews microbiology, 2010. 8(7): p. 481-490.https://doi.org/10.1038/nrmicro2337
Caton, J.G., et al., A new classification scheme for periodontal and peri‐implant diseases and conditions–Introduction and key changes from the 1999 classification. 2018, Wiley Online Library. p. S1-S8.
Williams, D.W., et al., Human oral mucosa cell atlas reveals a stromal-neutrophil axis regulating tissue immunity. Cell, 2021. 184(15): p. 4090-4104. e15.https://doi.org/10.1016/j.cell.2021.05.013
Miralda, I. and S.M. Uriarte, Periodontal Pathogens’ strategies disarm neutrophils to promote dysregulated inflammation. Molecular oral microbiology, 2021. 36(2): p. 103-120.https://doi.org/10.1111/omi.12321
Cai, Z., et al., Structure and function of oral microbial community in periodontitis based on integrated data. Frontiers in Cellular and Infection Microbiology, 2021. 11: p. 663756.https://doi.org/10.3389/fcimb.2021.663756
Martínez, A., R. Kuraji, and Y.L. Kapila, The human oral virome: shedding light on the dark matter. Periodontology 2000, 2021. 87(1): p. 282-298.https://doi.org/10.1111/prd.12396
Bamashmous, S., et al., Human variation in gingival inflammation. Proceedings of the National Academy of Sciences, 2021. 118(27): p. e2012578118.https://doi.org/10.1073/pnas.2012578118
Wang, S., et al., Oral microbiome and its relationship with oral cancer. J Cancer Res Ther, 2024. 20(4): p. 1141-1149.https://doi.org/10.4103/jcrt.jcrt_44_24
Artico, G., et al., Prevalence of C andida spp., xerostomia, and hyposalivation in oral lichen planus–A controlled study. Oral diseases, 2014. 20(3): p. e36-e41.https://doi.org/10.1111/odi.12120
Alnuaimi, A.D., et al., Candida virulence and ethanol‐derived acetaldehyde production in oral cancer and non‐cancer subjects. Oral diseases, 2016. 22(8): p. 805-814.https://doi.org/10.1111/odi.12565
Bhatt, A.P., M.R. Redinbo, and S.J. Bultman, The role of the microbiome in cancer development and therapy. CA: a cancer journal for clinicians, 2017. 67(4): p. 326-344.https://doi.org/10.3322/caac.21398
Pushalkar, S., et al., Comparison of oral microbiota in tumor and non-tumor tissues of patients with oral squamous cell carcinoma. BMC microbiology, 2012. 12: p. 1-15.https://doi.org/10.1186/1471-2180-12-144
Roginskaya, M. and Y. Razskazovskiy, Oxidative DNA damage and repair: mechanisms, mutations, and relation to diseases. 2023, MDPI. p. 1623.
Anvarbatcha, R., F. Kunnathodi, and M. Islam, Induction of G0/G1 phase cell cycle arrest and apoptosis by thymol through ROS generation and caspase-9/-3 activation in breast and colorectal cancer cell lines. Journal of Cancer Research and Therapeutics, 2023. 19(7): p. 1915-1924.https://doi.org/10.4103/jcrt.jcrt_308_22
Huang, C., et al., TSPYL5 inhibits the tumorigenesis of colorectal cancer cells in vivo by triggering DNA damage. Journal of Cancer Research and Therapeutics, 2023. 19(4): p. 898-903.https://doi.org/10.4103/jcrt.jcrt_1098_21
Singh, S., P.K. Yadav, and A.K. Singh, In‐silico structural characterization and phylogenetic analysis of Nucleoside diphosphate kinase: A novel antiapoptotic protein of Porphyromonas gingivalis. Journal of Cellular Biochemistry, 2023. 124(4): p. 545-556.https://doi.org/10.1002/jcb.30389
Chen, W.A., et al., Local and systemic effects of Porphyromonas gingivalis infection. Microorganisms, 2023. 11(2): p. 470.https://doi.org/10.3390/microorganisms11020470
Ren, J., et al., P. gingivalis infection upregulates PD-L1 expression on dendritic cells, suppresses CD8+ T-cell responses, and aggravates oral cancer. Cancer immunology research, 2023. 11(3): p. 290-305.https://doi.org/10.1158/2326-6066.CIR-22-0541
Nieminen, M.T., et al., Treponema denticola chymotrypsin-like proteinase may contribute to orodigestive carcinogenesis through immunomodulation. British journal of cancer, 2018. 118(3): p. 428-434.https://doi.org/10.1038/bjc.2017.409
Cui, N., M. Hu, and R.A. Khalil, Biochemical and biological attributes of matrix metalloproteinases. Progress in molecular biology and translational science, 2017. 147: p. 1-73.https://doi.org/10.1016/bs.pmbts.2017.02.005
Malinowski, B., et al., The role of Tannerella forsythia and Porphyromonas gingivalis in pathogenesis of esophageal cancer. Infectious agents and cancer, 2019. 14: p. 1-8.https://doi.org/10.1186/s13027-019-0220-2
Mager, D., et al., The salivary microbiota as a diagnostic indicator of oral cancer: a descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. Journal of translational medicine, 2005. 3: p. 1-8.https://doi.org/10.1186/1479-5876-3-27
Robayo, D.A.G., et al., Oropharyngeal squamous cell carcinoma: human papilloma virus coinfection with Streptococcus anginosus. Brazilian dental journal, 2019. 30(6): p. 626-633.https://doi.org/10.1590/0103-6440201902805
Gillison, M.L., Flashback foreword: human papillomavirus and incidence and survival of oropharyngeal cancers. 2023, Wolters Kluwer Health. p. 3079-3080.
de Lima, M.A.P., et al., Association between Epstein-Barr virus and oral carcinoma: a systematic review with meta-analysis. Critical Reviews™ in Oncogenesis, 2019. 24(4).https://doi.org/10.1615/CritRevOncog.2019031897
Vesty, A., et al., Microbial and inflammatory‐based salivary biomarkers of head and neck squamous cell carcinoma. Clinical and experimental dental research, 2018. 4(6): p. 255-262.https://doi.org/10.1002/cre2.139
Abidullah, M., et al., Investigation of candidal species among people who suffer from oral potentially malignant disorders and oral squamous cell carcinoma. Journal of Pharmacy and Bioallied Sciences, 2021. 13(Suppl 2): p. S1050-S1054.https://doi.org/10.4103/jpbs.jpbs_357_21
Parisa, A., et al., Anti-cancer effects of Bifidobacterium species in colon cancer cells and a mouse model of carcinogenesis. PloS one, 2020. 15(5): p. e0232930.https://doi.org/10.1371/journal.pone.0242387
Wang, Q., et al., Expert consensus on the relevance of intestinal microecology and hematopoietic stem cell transplantation. Clinical Transplantation, 2024. 38(1): p. e15186.https://doi.org/10.1111/ctr.15186
Wang, J., et al., Chinese expert consensus on intestinal microecology and management of digestive tract complications related to tumor treatment (version 2022). Journal of Cancer Research and Therapeutics, 2022. 18(7): p. 1835-1844.https://doi.org/10.4103/jcrt.jcrt_1444_22
Stringer, A.M., et al., Chemotherapy-induced mucositis: the role of gastrointestinal microflora and mucins in the luminal environment. 2008.https://doi.org/10.1258/ebm.2012.012260
Amin, M., et al., Tumor-targeted induction of intrinsic apoptosis in colon cancer cells by Lactobacillus plantarum and Lactobacillus rhamnosus strains. Molecular Biology Reports, 2023. 50(6): p. 5345-5354.https://doi.org/10.1007/s11033-023-08445-x
Mammen, M.J., F.A. Scannapieco, and S. Sethi, Oral‐lung microbiome interactions in lung diseases. Periodontology 2000, 2020. 83(1): p. 234-241.https://doi.org/10.1111/prd.12301
Atarashi, K., et al., Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science, 2017. 358(6361): p. 359-365.https://doi.org/10.1126/science.aan4526
Kitamoto, S., et al., The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis. Cell, 2020. 182(2): p. 447-462. e14.https://doi.org/10.1016/j.cell.2020.05.048
Abed, J., et al., Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell host & microbe, 2016. 20(2): p. 215-225.https://doi.org/10.1016/j.chom.2016.07.006
Gur, C., et al., Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity, 2015. 42(2): p. 344-355.https://doi.org/10.1016/j.immuni.2015.01.010
Dioguardi, M., et al., The role of periodontitis and periodontal bacteria in the onset and progression of Alzheimer’s disease: a systematic review. Journal of clinical medicine, 2020. 9(2): p. 495.https://doi.org/10.3390/jcm9020495
Miles, B., et al., Secondary lymphoid organ homing phenotype of human myeloid dendritic cells disrupted by an intracellular oral pathogen. Infection and immunity, 2014. 82(1): p. 101-111.https://doi.org/10.1128/iai.01157-13
Konig, M.F., et al., Aggregatibacter actinomycetemcomitans–induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis. Science translational medicine, 2016. 8(369): p. 369ra176-369ra176.https://doi.org/10.1126/scitranslmed.aaj1921
Gully, N., et al., Porphyromonas gingivalis peptidylarginine deiminase, a key contributor in the pathogenesis of experimental periodontal disease and experimental arthritis. PloS one, 2014. 9(6): p. e100838.https://doi.org/10.1371/journal.pone.0100838
Calderón-Gómez, E., et al., Commensal-specific CD4+ cells from patients with Crohn’s disease have a T-helper 17 inflammatory profile. Gastroenterology, 2016. 151(3): p. 489-500. e3.https://doi.org/10.1053/j.gastro.2016.05.050
Hajishengallis, G. and T. Chavakis, Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nature Reviews Immunology, 2021. 21(7): p. 426-440.https://doi.org/10.1038/s41577-020-00488-6
Stöhr, J., et al., Bidirectional association between periodontal disease and diabetes mellitus: a systematic review and meta-analysis of cohort studies. Scientific Reports, 2021. 11(1): p. 13686.https://doi.org/10.1038/s41598-021-93062-6
Views:
300
Downloads:
243
Copyright (c) 2025 Gabriela Łocik, Joanna Kośka, Marta Bonarska, Damian Adasik, Katarzyna Herjan, Katarzyna Moliszewska, Julia Mazurek, Julia Załęcka, Kacper Dywan, Martyna Musiorska, Michał Błaszkiewicz, Paweł Kukiełka

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.