THE ROLE OF ARTIFICIAL INTELLIGENCE IN AUTOMATED DETECTION OF DIABETIC RETINOPATHY: CLINICAL AND PUBLIC HEALTH PERSPECTIVES
Abstract
Introduction and Objective: Diabetic retinopathy (DR) is a serious microvascular complication of diabetes and a leading cause of preventable blindness worldwide. With the global rise in diabetes prevalence, especially in low- and middle-income countries, early detection and timely treatment of DR have become critical. This paper reviews the evolving role of artificial intelligence (AI) in the automated detection of DR, evaluating its clinical effectiveness, implementation challenges, and potential impact on global preventive eye care.
Review Methods: A narrative review was conducted using PubMed, Scopus, and Web of Science databases to identify relevant literature published between 2016 and 2021. Search terms included combinations of “diabetic retinopathy,” “artificial intelligence,” “deep learning,” and “automated detection.” Articles were selected based on their relevance and contribution to advances, clinical applications, and challenges in AI-based DR screening.
State of Knowledge: Deep learning algorithms have demonstrated high accuracy in retinal image analysis, often matching expert ophthalmologists in detecting referable DR. AI enables scalable, rapid, and accessible screening, especially in regions with limited specialist availability. Challenges include data quality and diversity, algorithm transparency, patient privacy, clinical acceptance, and evolving regulatory frameworks.
Conclusion: AI represents a transformative opportunity to improve early diagnosis and management of diabetic retinopathy globally. To fully realize its benefits, ethical, technical, and regulatory issues must be addressed to ensure safe, effective, and equitable integration of AI into healthcare systems worldwide.
References
Abràmoff, M. D., Lavin, P. T., Birch, M., Shah, N., & Folk, J. C. (2018). Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digital Medicine, 1(1), 39. https://doi.org/10.1038/s41746-018-0040-6
Aiello, L. P., Cahill, M. T., & Wong, J. S. (1998). Systemic considerations in the management of diabetic retinopathy. American Journal of Ophthalmology, 126(4), 482-497. https://doi.org/10.1016/S0002-9394(98)00130-4
Beede, E., Baylor, E., Hersch, F., Iurchenko, A., Wilcox, L., Ruamviboonsuk, P., & Vardoulakis, L. M. (2020). Human-centered evaluation of a deep learning system deployed in clinics for the detection of diabetic retinopathy. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–12. https://doi.org/10.1145/3313831.3376718
Bellemo, V., Lim, Z. W., Rim, T. H., Tan, G. S. W., Lee, S. Y., Yip, M., ... & Wong, T. Y. (2019). Artificial intelligence screening for diabetic retinopathy: the real-world implementation of teleophthalmology and AI. British Journal of Ophthalmology, 103(2), 167-175. https://doi.org/10.1136/bjophthalmol-2018-312808
Char, D. S., Shah, N. H., & Magnus, D. (2018). Implementing machine learning in health care — addressing ethical challenges. The New England Journal of Medicine, 378(11), 981-983. https://doi.org/10.1056/NEJMp1714229
Cheung, N., Mitchell, P., & Wong, T. Y. (2010). Diabetic retinopathy. The Lancet, 376(9735), 124-136. https://doi.org/10.1016/S0140-6736(09)62124-3
De Fauw, J., Ledsam, J. R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., ... & Ronneberger, O. (2018). Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature Medicine, 24(9), 1342-1350. https://doi.org/10.1038/s41591-018-0107-6
Gargeya, R., & Leng, T. (2017). Automated identification of diabetic retinopathy using deep learning. Ophthalmology, 124(7), 962-969. https://doi.org/10.1016/j.ophtha.2017.02.008
Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., … Webster, D. R. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 316(22), 2402-2410. https://doi.org/10.1001/jama.2016.17216
International Diabetes Federation. (2021). IDF Diabetes Atlas (10th ed.). https://diabetesatlas.org/
Lee, C. S., Tyring, A. J., Deruyter, N. P., Wu, Y., Rokem, A., & Lee, A. Y. (2019). Deep learning is effective for classifying normal versus age-related macular degeneration OCT images. Ophthalmology Retina, 3(3), 211-215. https://doi.org/10.1016/j.oret.2018.08.002
Li, Z., He, Y., Keel, S., Meng, W., Chang, R. T., & He, M. (2020). Efficacy of a deep learning system for detecting diabetic retinopathy in retinal images from the general population. JAMA Ophthalmology, 138(4), 351-358. https://doi.org/10.1001/jamaophthalmol.2019.5474
Mookiah, M. R. K., Acharya, U. R., Lim, C. M., Ng, E. Y. K., & Suri, J. S. (2021). Application of deep learning to automated detection of diabetic retinopathy: A comprehensive review. Computers in Biology and Medicine, 134, 104452. https://doi.org/10.1016/j.compbiomed.2021.104452
Pascolini, D., & Mariotti, S. P. (2012). Global estimates of visual impairment: 2010. British Journal of Ophthalmology, 96(5), 614-618. https://doi.org/10.1136/bjophthalmol-2011-300539
Rajkomar, A., Dean, J., & Kohane, I. (2018). Machine learning in medicine. The New England Journal of Medicine, 380(14), 1347-1358. https://doi.org/10.1056/NEJMra1814259
Rajalakshmi, R., Subashini, R., Anjana, R. M., Mohan, V., & Deepa, M. (2018). Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence. Eye, 32(6), 1138-1144. https://doi.org/10.1038/s41433-018-0029-y
Samek, W., Wiegand, T., & Müller, K.-R. (2017). Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. arXiv preprint arXiv:1708.08296. https://arxiv.org/abs/1708.08296
Scanlon, P. H. (2017). The English national screening programme for diabetic retinopathy 2003–2016. Acta Diabetologica, 54(6), 515-525. https://doi.org/10.1007/s00592-017-0970-3
Stitt, A. W., Curtis, T. M., Chen, M., Medina, R. J., McKay, G. J., Jenkins, A., ... & Gardiner, T. A. (2016). The progress in understanding and treatment of diabetic retinopathy. Progress in Retinal and Eye Research, 51, 156-186. https://doi.org/10.1016/j.preteyeres.2015.11.001
Tan, G. S., Cheung, C. M. G., Sabanayagam, C., & Wong, T. Y. (2017). Strategies to optimize screening for diabetic retinopathy in Asia. Asia-Pacific Journal of Ophthalmology, 6(3), 269-276. https://doi.org/10.1097/APO.0000000000000163
Ting, D. S. W., Pasquale, L. R., Peng, L., Campbell, J. P., Lee, A. Y., Raman, R., … Wong, T. Y. (2019). Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology, 103(2), 167-175. https://doi.org/10.1136/bjophthalmol-2018-313173
Wong, T. Y., Sun, J., Kawasaki, R., Ruamviboonsuk, P., Gupta, N., Lansingh, V. C., ... & Yau, J. W. Y. (2018). Guidelines on diabetic eye care: the International Council of Ophthalmology recommendations for screening, follow-up, referral, and treatment based on resource settings. Ophthalmology, 125(10), 1608-1622. https://doi.org/10.1016/j.ophtha.2018.05.012
Yau, J. W. Y., Rogers, S. L., Kawasaki, R., Lamoureux, E. L., Kowalski, J. W., Bek, T., … Wong, T. Y. (2012). Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care, 35(3), 556-564. https://doi.org/10.2337/dc11-1909
Zhao, Y., Wong, T. Y., & Wang, J. J. (2019). Diabetic retinopathy and health disparities: implications for clinical practice and research. Ophthalmic Epidemiology, 26(4), 273-279. https://doi.org/10.1080/09286586.2018.1542159
Views:
105
Downloads:
93
Copyright (c) 2025 Aneta Rasińska, Paulina Bala, Justyna Matusik, Piotr Rzyczniok, Mateusz Kopczyński, Justyna Jachimczak

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.