ANTIOXIDANT PROPERTIES OF MATCHA IN DRY EYE DISEASE PREVENTION: CAN MATCHA POLYPHENOLS IMPROVE OCULAR HYDRATION?
Abstract
Dry eye disease (DED), characterized by unstable tear film and damage to the eye's surface, is becoming more common because of environmental and lifestyle factors. Conventional treatments often don’t fix the problems of oxidative stress and inflammation that cause it. This has led to interest in natural antioxidants like matcha, a type of green tea powder grown in the shade. Unlike conventional green tea, matcha contains higher concentrations of polyphenols, particularly epigallocatechin gallate (EGCG). These polyphenols have strong antioxidant and anti-inflammatory effects. This review explores matcha’s potential in preventing DED by analyzing its mechanisms of action, such as by removing reactive oxygen species (ROS) and increasing endogenous antioxidants (e.g., superoxide dismutase). It also looks at how matcha reduces pro-inflammatory cytokines (e.g., TNF-α, IL-6) through the NF-κB and MAPK pathways. The discussion also covers matcha’s effects on tear film stability through enhanced mucin secretion and meibomian gland function.
Studies show that green tea polyphenols can improve tear production and reduce corneal staining, though matcha-specific studies remain limited. New research shows that it has systemic benefits, including modulation of gut microbiota, which may indirectly support ocular health.
Challenges include optimizing dosage and delivery methods, but matcha’s bioavailability and ability to act on many targets make it a potentially helpful additional treatment. More clinical trials are needed to prove its efficacy. However, current information suggests it could help with the many factors that cause DED by balancing redox and reducing inflammation.
References
Golden MI, Meyer JJ, Zeppieri M, Patel BC. Dry Eye Syndrome. StatPearls. Treasure Island (FL) ineligible companies. Disclosure: Jay Meyer declares no relevant financial relationships with ineligible companies. Disclosure: Marco Zeppieri declares no relevant financial relationships with ineligible companies. Disclosure: Bhupendra Patel declares no relevant financial relationships with ineligible companies.2025.
Stapleton F, Alves M, Bunya VY, Jalbert I, Lekhanont K, Malet F, et al. TFOS DEWS II Epidemiology Report. Ocul Surf. 2017;15(3):334-65. Epub 2017/07/25. doi: 10.1016/j.jtos.2017.05.003. PubMed PMID: 28736337.
Chu KO, Chan KP, Yip YWY, Chu WK, Wang CC, Pang CP. Systemic and Ocular Anti-Inflammatory Mechanisms of Green Tea Extract on Endotoxin-Induced Ocular Inflammation. Front Endocrinol (Lausanne). 2022;13:899271. Epub 2022/08/02. doi: 10.3389/fendo.2022.899271. PubMed PMID: 35909558; PubMed Central PMCID: PMCPMC9335207.
Wang Y, Xu H, Gao Y, Zhao B. Integrated analysis of transcriptomics and metabolomics reveals the mechanisms underlying green tea intervention in age-related macular degeneration. Journal of Functional Foods. 2024;122:106493. doi: https://doi.org/10.1016/j.jff.2024.106493.
Boroughani M, Tahmasbi Z, Heidari MM, Johari M, Hashempur MH, Heydari M. Potential therapeutic effects of green tea (Camellia sinensis) in eye diseases, a review. Heliyon. 2024;10(7):e28829. Epub 2024/04/11. doi: 10.1016/j.heliyon.2024.e28829. PubMed PMID: 38601618; PubMed Central PMCID: PMCPMC11004586.
Ng D, Altamirano-Vallejo JC, Gonzalez-De la Rosa A, Navarro-Partida J, Valdez-Garcia JE, Acosta-Gonzalez R, et al. An Oral Polyphenol Formulation to Modulate the Ocular Surface Inflammatory Process and to Improve the Symptomatology Associated with Dry Eye Disease. Nutrients. 2022;14(15). Epub 2022/08/13. doi: 10.3390/nu14153236. PubMed PMID: 35956412; PubMed Central PMCID: PMCPMC9370512.
Seen S, Tong L. Dry eye disease and oxidative stress. Acta Ophthalmol. 2018;96(4):e412-e20. Epub 2017/08/24. doi: 10.1111/aos.13526. PubMed PMID: 28834388.
Karpecki PM, Nichols KK, Sheppard JD. Addressing excessive evaporation: an unmet need in dry eye disease. Am J Manag Care. 2023;29(13 Suppl):S239-S47. Epub 2023/10/16. doi: 10.37765/ajmc.2023.89448. PubMed PMID: 37844320.
Roda M, Corazza I, Bacchi Reggiani ML, Pellegrini M, Taroni L, Giannaccare G, et al. Dry Eye Disease and Tear Cytokine Levels-A Meta-Analysis. Int J Mol Sci. 2020;21(9). Epub 2020/05/02. doi: 10.3390/ijms21093111. PubMed PMID: 32354090; PubMed Central PMCID: PMCPMC7246678.
Chen Y, Mallem K, Asbell PA, Ying GS. A latent profile analysis of tear cytokines and their association with severity of dry eye disease in the Dry Eye Assessment and Management (DREAM) study. Sci Rep. 2024;14(1):526. Epub 2024/01/05. doi: 10.1038/s41598-024-51241-1. PubMed PMID: 38177232; PubMed Central PMCID: PMCPMC10767023.
Patel S, Mittal R, Kumar N, Galor A. The environment and dry eye-manifestations, mechanisms, and more. Front Toxicol. 2023;5:1173683. Epub 2023/09/08. doi: 10.3389/ftox.2023.1173683. PubMed PMID: 37681211; PubMed Central PMCID: PMCPMC10482047.
Bu J, Liu Y, Zhang R, Lin S, Zhuang J, Sun L, et al. Potential New Target for Dry Eye Disease-Oxidative Stress. Antioxidants (Basel). 2024;13(4). Epub 2024/04/27. doi: 10.3390/antiox13040422. PubMed PMID: 38671870; PubMed Central PMCID: PMCPMC11047456.
Dogru M, Kojima T, Simsek C, Tsubota K. Potential Role of Oxidative Stress in Ocular Surface Inflammation and Dry Eye Disease. Invest Ophthalmol Vis Sci. 2018;59(14):DES163-DES8. Epub 2018/11/28. doi: 10.1167/iovs.17-23402. PubMed PMID: 30481822.
Nejabat M, Reza SA, Zadmehr M, Yasemi M, Sobhani Z. Efficacy of Green Tea Extract for Treatment of Dry Eye and Meibomian Gland Dysfunction; A Double-blind Randomized Controlled Clinical Trial Study. J Clin Diagn Res. 2017;11(2):NC05-NC8. Epub 2017/04/08. doi: 10.7860/JCDR/2017/23336.9426. PubMed PMID: 28384900; PubMed Central PMCID: PMCPMC5376801.
Favero G, Moretti E, Krajcikova K, Tomeckova V, Rezzani R. Evidence of Polyphenols Efficacy against Dry Eye Disease. Antioxidants (Basel). 2021;10(2). Epub 2021/02/03. doi: 10.3390/antiox10020190. PubMed PMID: 33525721; PubMed Central PMCID: PMCPMC7911148.
Alves M, Novaes P, Morraye Mde A, Reinach PS, Rocha EM. Is dry eye an environmental disease? Arq Bras Oftalmol. 2014;77(3):193-200. Epub 2014/10/09. doi: 10.5935/0004-2749.20140050. PubMed PMID: 25295911.
Chen X, Ye K, Xu Y, Zhao Y, Zhao D. Effect of Shading on the Morphological, Physiological, and Biochemical Characteristics as Well as the Transcriptome of Matcha Green Tea. Int J Mol Sci. 2022;23(22). Epub 2022/11/27. doi: 10.3390/ijms232214169. PubMed PMID: 36430647; PubMed Central PMCID: PMCPMC9696345.
Sokary S, Al-Asmakh M, Zakaria Z, Bawadi H. The therapeutic potential of matcha tea: A critical review on human and animal studies. Curr Res Food Sci. 2023;6:100396. Epub 2022/12/31. doi: 10.1016/j.crfs.2022.11.015. PubMed PMID: 36582446; PubMed Central PMCID: PMCPMC9792400.
Phuah YQ, Chang SK, Ng WJ, Lam MQ, Ee KY. A review on matcha: Chemical composition, health benefits, with insights on its quality control by applying chemometrics and multi-omics. Food Res Int. 2023;170:113007. Epub 2023/06/15. doi: 10.1016/j.foodres.2023.113007. PubMed PMID: 37316075.
Manikharda, Shofi VE, Betari BK, Supriyadi. Effect shading intensity on color, chemical composition, and sensory evaluation of green tea (Camelia sinensis var Assamica). Journal of the Saudi Society of Agricultural Sciences. 2023;22(7):407-12. doi: https://doi.org/10.1016/j.jssas.2023.03.006.
Kochman J, Jakubczyk K, Antoniewicz J, Mruk H, Janda K. Health Benefits and Chemical Composition of Matcha Green Tea: A Review. Molecules. 2020;26(1). Epub 2020/12/31. doi: 10.3390/molecules26010085. PubMed PMID: 33375458; PubMed Central PMCID: PMCPMC7796401.
Weiss DJ, Anderton CR. Determination of catechins in matcha green tea by micellar electrokinetic chromatography. J Chromatogr A. 2003;1011(1-2):173-80. Epub 2003/10/02. doi: 10.1016/s0021-9673(03)01133-6. PubMed PMID: 14518774.
Jakubczyk K, Kochman J, Kwiatkowska A, Kaldunska J, Dec K, Kawczuga D, et al. Antioxidant Properties and Nutritional Composition of Matcha Green Tea. Foods. 2020;9(4). Epub 2020/04/16. doi: 10.3390/foods9040483. PubMed PMID: 32290537; PubMed Central PMCID: PMCPMC7231151.
Chu KO, Chan KP, Yang YP, Qin YJ, Li WY, Chan SO, et al. Effects of EGCG content in green tea extract on pharmacokinetics, oxidative status and expression of inflammatory and apoptotic genes in the rat ocular tissues. J Nutr Biochem. 2015;26(11):1357-67. Epub 2015/09/13. doi: 10.1016/j.jnutbio.2015.07.001. PubMed PMID: 26362107.
Messmer EM, Ahmad S, Benitez Del Castillo JM, Mrukwa-Kominek E, Rolando M, Vitovska O, et al. Management of inflammation in dry eye disease: Recommendations from a European panel of experts. Eur J Ophthalmol. 2023;33(3):1294-307. Epub 2022/12/07. doi: 10.1177/11206721221141481. PubMed PMID: 36471573; PubMed Central PMCID: PMCPMC10152565.
Sanchez-Huerta V, Gutierrez-Sanchez L, Flores-Estrada J. (-)-Epigallocatechin 3-gallate (EGCG) at the ocular surface inhibits corneal neovascularization. Med Hypotheses. 2011;76(3):311-3. Epub 2010/10/26. doi: 10.1016/j.mehy.2010.09.020. PubMed PMID: 20971568.
Gipson IK, Hori Y, Argueso P. Character of ocular surface mucins and their alteration in dry eye disease. Ocul Surf. 2004;2(2):131-48. Epub 2007/01/12. doi: 10.1016/s1542-0124(12)70149-0. PubMed PMID: 17216084.
Hisey EA, Wong S, Park S, Gamarra KA, Adelman SA, Knickelbein KE, et al. Meibomian gland lipid alterations and ocular surface sequela in Awat2 knockout murine model of meibomian gland dysfunction and evaporative dry eye disease. Ocul Surf. 2024;34:489-503. Epub 2024/10/17. doi: 10.1016/j.jtos.2024.10.003. PubMed PMID: 39414024; PubMed Central PMCID: PMCPMC11879417.
Im M, Kim SY, Sohn KC, Choi DK, Lee Y, Seo YJ, et al. Epigallocatechin-3-gallate suppresses IGF-I-induced lipogenesis and cytokine expression in SZ95 sebocytes. J Invest Dermatol. 2012;132(12):2700-8. Epub 2012/07/06. doi: 10.1038/jid.2012.202. PubMed PMID: 22763784.
Lee HS, Chauhan SK, Okanobo A, Nallasamy N, Dana R. Therapeutic efficacy of topical epigallocatechin gallate in murine dry eye. Cornea. 2011;30(12):1465-72. Epub 2011/10/14. doi: 10.1097/ICO.0b013e31821c9b5a. PubMed PMID: 21993466; PubMed Central PMCID: PMCPMC3703663.
Bhargava R, Kumar P, Kumar M, Mehra N, Mishra A. A randomized controlled trial of omega-3 fatty acids in dry eye syndrome. Int J Ophthalmol. 2013;6(6):811-6. Epub 2014/01/07. doi: 10.3980/j.issn.2222-3959.2013.06.13. PubMed PMID: 24392330; PubMed Central PMCID: PMCPMC3874521.
Shin HY, Kim SH, Jeong HJ, Kim SY, Shin TY, Um JY, et al. Epigallocatechin-3-gallate inhibits secretion of TNF-alpha, IL-6 and IL-8 through the attenuation of ERK and NF-kappaB in HMC-1 cells. Int Arch Allergy Immunol. 2007;142(4):335-44. Epub 2006/12/01. doi: 10.1159/000097503. PubMed PMID: 17135765.
Lemos CN, da Silva L, Faustino JF, Fantucci MZ, Murashima AAB, Adriano L, et al. Oxidative Stress in the Protection and Injury of the Lacrimal Gland and the Ocular Surface: are There Perspectives for Therapeutics? Front Cell Dev Biol. 2022;10:824726. Epub 2022/04/02. doi: 10.3389/fcell.2022.824726. PubMed PMID: 35359431; PubMed Central PMCID: PMCPMC8963457.
Fu Z, Liu C, Zeng T, Wang Y, Liang Y, Ao N, et al. The integrated analysis of transcriptomics and metabolomics reveals the effects of tea polyphenols on lipid metabolism in lion-head geese. Poult Sci. 2025;104(6):104958. Epub 2025/04/07. doi: 10.1016/j.psj.2025.104958. PubMed PMID: 40188624; PubMed Central PMCID: PMCPMC12002774.
Fu L, Zhao Z, Zhao S, Zhang M, Teng X, Wang L, et al. The involvement of aquaporin 5 in the inflammatory response of primary Sjogren's syndrome dry eye: potential therapeutic targets exploration. Front Med (Lausanne). 2024;11:1439888. Epub 2024/10/08. doi: 10.3389/fmed.2024.1439888. PubMed PMID: 39376655; PubMed Central PMCID: PMCPMC11456562.
Hu J, Webster D, Cao J, Shao A. The safety of green tea and green tea extract consumption in adults - Results of a systematic review. Regul Toxicol Pharmacol. 2018;95:412-33. Epub 2018/03/28. doi: 10.1016/j.yrtph.2018.03.019. PubMed PMID: 29580974.
Additives EPoF, Nutrient Sources added to F, Younes M, Aggett P, Aguilar F, Crebelli R, et al. Scientific opinion on the safety of green tea catechins. EFSA J. 2018;16(4):e05239. Epub 2018/04/18. doi: 10.2903/j.efsa.2018.5239. PubMed PMID: 32625874; PubMed Central PMCID: PMCPMC7009618.
Sharif Z, Sharif W. Corneal neovascularization: updates on pathophysiology, investigations & management. Rom J Ophthalmol. 2019;63(1):15-22. Epub 2019/06/15. PubMed PMID: 31198893; PubMed Central PMCID: PMCPMC6531773.
Zhu BH, Zhan WH, Li ZR, Wang Z, He YL, Peng JS, et al. (-)-Epigallocatechin-3-gallate inhibits growth of gastric cancer by reducing VEGF production and angiogenesis. World J Gastroenterol. 2007;13(8):1162-9. Epub 2007/04/25. doi: 10.3748/wjg.v13.i8.1162. PubMed PMID: 17451194; PubMed Central PMCID: PMCPMC4146988.
Rashidi B, Malekzadeh M, Goodarzi M, Masoudifar A, Mirzaei H. Green tea and its anti-angiogenesis effects. Biomed Pharmacother. 2017;89:949-56. Epub 2017/03/16. doi: 10.1016/j.biopha.2017.01.161. PubMed PMID: 28292023.
Sharifi-Rad M, Pezzani R, Redaelli M, Zorzan M, Imran M, Ahmed Khalil A, et al. Preclinical Pharmacological Activities of Epigallocatechin-3-gallate in Signaling Pathways: An Update on Cancer. Molecules. 2020;25(3). Epub 2020/01/26. doi: 10.3390/molecules25030467. PubMed PMID: 31979082; PubMed Central PMCID: PMCPMC7037968.
Aksan B, Mauceri D. Beyond vessels: unraveling the impact of VEGFs on neuronal functions and structure. J Biomed Sci. 2025;32(1):33. Epub 2025/03/07. doi: 10.1186/s12929-025-01128-8. PubMed PMID: 40050849; PubMed Central PMCID: PMCPMC11884128.
Hecking I, Stegemann LN, Theis V, Vorgerd M, Matschke V, Stahlke S, et al. Neuroprotective Effects of VEGF in the Enteric Nervous System. Int J Mol Sci. 2022;23(12). Epub 2022/06/25. doi: 10.3390/ijms23126756. PubMed PMID: 35743202; PubMed Central PMCID: PMCPMC9224388.
Floyd JL, Grant MB. The Gut-Eye Axis: Lessons Learned from Murine Models. Ophthalmol Ther. 2020;9(3):499-513. Epub 2020/07/04. doi: 10.1007/s40123-020-00278-2. PubMed PMID: 32617914; PubMed Central PMCID: PMCPMC7406577.
Wu Z, Shen J, Xu Q, Xiang Q, Chen Y, Lv L, et al. Epigallocatechin-3-Gallate Improves Intestinal Gut Microbiota Homeostasis and Ameliorates Clostridioides difficile Infection. Nutrients. 2022;14(18). Epub 2022/09/24. doi: 10.3390/nu14183756. PubMed PMID: 36145133; PubMed Central PMCID: PMCPMC9504111.
Mei H, Li J, Liu S, Jeyaraj A, Zhuang J, Wang Y, et al. The Role of Green Tea on the Regulation of Gut Microbes and Prevention of High-Fat Diet-Induced Metabolic Syndrome in Mice. Foods. 2023;12(15). Epub 2023/08/12. doi: 10.3390/foods12152953. PubMed PMID: 37569222; PubMed Central PMCID: PMCPMC10418490.
Schaefer L, Hernandez H, Coats RA, Yu Z, Pflugfelder SC, Britton RA, et al. Gut-derived butyrate suppresses ocular surface inflammation. Sci Rep. 2022;12(1):4512. Epub 2022/03/18. doi: 10.1038/s41598-022-08442-3. PubMed PMID: 35296712; PubMed Central PMCID: PMCPMC8927112.
Views:
71
Downloads:
79
Copyright (c) 2025 Maja Ćwiek, Jan Bombuy Gimenez, Piotr Łapiński

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.