FATIGUE FRACTURES IN RECREATIONAL AND PROFESSIONAL ATHLETES: RISK FACTORS, PREVENTION, AND RECOVERY STRATEGIES
Abstract
Objectives: In the review we synthesized current evidence on fatigue fractures in athletes to bridge pathophysiological mechanisms with clinical strategies for prevention, diagnosis, and recovery.
Methods: A comprehensive analysis incorporated epidemiological studies, biomechanical research, clinical trials, and meta-analyses examining risk factors, diagnostics, interventions, and rehabilitation protocols.
Key findings: Fatigue fractures arise from repetitive microdamage exceeding bone repair capacity, amplified by intrinsic factors (e.g., low bone mineral density, hormonal imbalances) and extrinsic triggers (training errors, nutritional deficiencies). Magnetic resonance imaging demonstrated 90-95% diagnostic sensitivity. Gradual training progression (acute:chronic workload ratio < 1.5) reduced injuries by 30-50%, while nutritional optimization (calcium 1200-1500 mg/day; vitamin D ≥ 30ng/mL) enhanced recovery by 40%. Female athletes with relative energy deficiency faced 4-fold higher risk, mitigated through hormone/nutrition strategies. Advanced therapies like teriparatide improved outcomes in complex cases.
Conclusions: Effective management requires multidisciplinary integration of sport-specific biomechanics, nutritional/hormonal optimization, phased rehabilitation, and individualized load monitoring, with tailored approaches for post-hiatus deconditioning and aging physiology.
References
Addai, D., Zarkos, J., & Tolekova, A. (2019). The bone hormones and their potential effects on glucose and energy metabolism. Endocrine Regulations, *53*(4), 268–273. https://doi.org/10.2478/enr-2019-0027
Anderson, E. G. (1990). Fatigue fractures of the foot. Injury, *21*(5), 275–279. https://doi.org/10.1016/0020-1383(90)90039-W
Aspray, T. J., & Hill, T. R. (2019). Osteoporosis and the ageing skeleton. Subcellular Biochemistry, *91*, 453–476. https://doi.org/10.1007/978-981-13-3681-2_16
Beit Ner, E., Rabau, O., Dosani, S., & Velkes, S. (2022). Sacral stress fractures in athletes. European Spine Journal, *31*(1), 1–9. https://doi.org/10.1007/s00586-021-07043-4
Close, G. L., Sale, C., Baar, K., & Bermon, S. (2019). Nutrition for the prevention and treatment of injuries in track and field athletes. International Journal of Sport Nutrition and Exercise Metabolism, *29*(2), 189–197. https://doi.org/10.1123/ijsnem.2018-0290
Dang, P., Zhao, Y., Wang, M., & Zhang, L. (2022). Fatigue fractures after the COVID-19 quarantine. The Physician and Sportsmedicine, *50*(3), 186–188. https://doi.org/10.1080/00913847.2021.1927232
Datta, H. K., Ng, W. F., Walker, J. A., Tuck, S. P., & Varanasi, S. S. (2008). The cell biology of bone metabolism. Journal of Clinical Pathology, *61*(5), 577–587. https://doi.org/10.1136/jcp.2007.048868
Elgali, I., Omar, O., Dahlin, C., & Thomsen, P. (2017). Guided bone regeneration: Materials and biological mechanisms revisited. European Journal of Oral Sciences, *125*(5), 315–337. https://doi.org/10.1111/eos.12364
Emery, C. A., & Pasanen, K. (2019). Current trends in sport injury prevention. Best Practice & Research Clinical Rheumatology, *33*(1), 3–15. https://doi.org/10.1016/j.berh.2019.02.009
Ensrud, K. E., & Crandall, C. J. (2017). Osteoporosis. Annals of Internal Medicine, *167*(3), ITC17–ITC32. https://doi.org/10.7326/AITC201708010
Fischer, V., Haffner-Luntzer, M., Amling, M., & Ignatius, A. (2018). Calcium and vitamin D in bone fracture healing and post-traumatic bone turnover. European Cells and Materials, *35*, 365–385. https://doi.org/10.22203/eCM.v035a25
Fredericson, M., Jennings, F., Beaulieu, C., & Matheson, G. O. (2006). Stress fractures in athletes. Topics in Magnetic Resonance Imaging, *17*(5), 309–325. https://doi.org/10.1097/RMR.0b013e3180421c8c
Hoenig, T., Ackerman, K. E., Beck, B. R., et al. (2022). Bone stress injuries. Nature Reviews Disease Primers, *8*(1), 26. https://doi.org/10.1038/s41572-022-00352-y
Kakouris, N., Yener, N., & Fong, D. T. P. (2021). A systematic review of running-related musculoskeletal injuries in runners. Journal of Sport and Health Science, *10*(5), 513–522. https://doi.org/10.1016/j.jshs.2021.04.001
Lambert, C., Ritzmann, R., Akoto, R., & Büsch, D. (2022). Epidemiology of injuries in Olympic sports. International Journal of Sports Medicine, *43*(5), 473–481. https://doi.org/10.1055/a-1641-0068
Lee, J., Byun, H., Perikamana, S. K. M., et al. (2019). Current advances in immunomodulatory biomaterials for bone regeneration. Advanced Healthcare Materials, *8*(4), e1801106. https://doi.org/10.1002/adhm.201801106
Lin, C. W. C., Donkers, N. A. J., Refshauge, K. M., et al. (2012). Rehabilitation for ankle fractures in adults. Cochrane Database of Systematic Reviews, *11*, CD005595. https://doi.org/10.1002/14651858.CD005595.pub3
Long, F. (2018). Energy metabolism and bone. Bone, *115*, 1. https://doi.org/10.1016/j.bone.2018.08.002
Mandell, J. C., Khurana, B., & Smith, S. E. (2017). Stress fractures of the foot and ankle, part 2: Site-specific etiology, imaging, and treatment, and differential diagnosis. Skeletal Radiology, *46*(9), 1165–1186. https://doi.org/10.1007/s00256-017-2632-7
Matcuk, G. R., Jr., Mahanty, S. R., Skalski, M. R., Patel, D. B., White, E. A., & Gottsegen, C. J. (2016). Stress fractures: Pathophysiology, clinical presentation, imaging features, and treatment options. Emergency Radiology, *23*(4), 365–375. https://doi.org/10.1007/s10140-016-1390-5
Matheson, G. O., Clement, D. B., McKenzie, D. C., Taunton, J. E., Lloyd-Smith, D. R., & MacIntyre, J. G. (1987). Stress fractures in athletes: A study of 320 cases. The American Journal of Sports Medicine, *15*(1), 46–58. https://doi.org/10.1177/036354658701500107
McInnis, K. C., & Ramey, L. N. (2016). High-risk stress fractures: Diagnosis and management. PM&R, *8*(3), S113–S124. https://doi.org/10.1016/j.pmrj.2015.09.019
Muñoz, M., Robinson, K., & Shibli-Rahhal, A. (2020). Bone health and osteoporosis prevention and treatment. Clinical Obstetrics and Gynecology, *63*(4), 770–787. https://doi.org/10.1097/GRF.0000000000000572
Perracini, M. R., Kristensen, M. T., Cunningham, C., & Sherrington, C. (2018). Physiotherapy following fragility fractures. Injury, *49*(8), 1413–1417. https://doi.org/10.1016/j.injury.2018.06.026
Pierpoint, L. A., & Collins, C. L. (2021). Epidemiology of sport-related concussion. Clinics in Sports Medicine, *40*(1), 1–18. https://doi.org/10.1016/j.csm.2020.08.013
Reid, I. R. (2010). Fat and bone. Archives of Biochemistry and Biophysics, *503*(1), 20–27. https://doi.org/10.1016/j.abb.2010.06.027
Saunier, J., & Chapurlat, R. (2018). Stress fracture in athletes. Joint Bone Spine, *85*(3), 307–310. https://doi.org/10.1016/j.jbspin.2017.04.013
Tenforde, A. S., Yin, A., & Hunt, K. J. (2016). Foot and ankle injuries in runners. Physical Medicine and Rehabilitation Clinics of North America, *27*(1), 121–137. https://doi.org/10.1016/j.pmrj.2015.08.007
Varley, I., Stebbings, G., Williams, A. G., et al. (2021). An investigation into the association of bone characteristics and body composition with stress fracture in athletes. The Journal of Sports Medicine and Physical Fitness, *61*(11), 1490–1498. https://doi.org/10.23736/S0022-4707.21.11871-7
Vitale, K., & Getzin, A. (2019). Nutrition and supplement update for the endurance athlete: Review and recommendations. Nutrients, *11*(6), 1289. https://doi.org/10.3390/nu11061289
Walmsley, G. G., Ransom, R. C., Zielins, E. R., et al. (2016). Stem cells in bone regeneration. Stem Cell Reviews and Reports, *12*(5), 524–529. https://doi.org/10.1007/s12015-016-9665-5
Warden, S. J., Davis, I. S., & Fredericson, M. (2014). Management and prevention of bone stress injuries in long-distance runners. Journal of Orthopaedic & Sports Physical Therapy, *44*(10), 749–765. https://doi.org/10.2519/jospt.2014.5334
Wojda, S. J., & Donahue, S. W. (2018). Parathyroid hormone for bone regeneration. Journal of Orthopaedic Research, *36*(10), 2586–2594. https://doi.org/10.1002/jor.24075
Views:
10
Downloads:
3
Copyright (c) 2025 Krzysztof Pietrzak, Małgorzata Wasilewska, Sebastian Polok

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.