KIDNEY HEALTH IN SPORT: INVESTIGATING THE INFLUENCE OF CREATINE, CITRULLINE, L-ARGININE, BETA-ALANINE AND BRANCHED CHAIN AMINO ACIDS (BCAA) ON RENAL FUNCTION
Abstract
Aims: The purpose of this review was to examine how five commonly used supplements, including creatine, citrulline, L-arginine, beta-alanine, and branched-chain amino acids (BCAAs), affect physical performance and kidney health. These compounds are widely consumed in the context of athletic training, yet their long-term safety with respect to renal function remains insufficiently defined.
Methodology: Relevant literature published between 1990 and 2024 was identified using PubMed, Scopus, and Google Scholar. The selection included studies describing the physiological effects and potential renal impact of each supplement.
State of Knowledge: Analysis of the available research suggests that creatine does not impair kidney function in healthy individuals. Citrulline is considered metabolically safe and may support renal health in specific contexts, although elevated concentrations in patients with reduced kidney function could indicate metabolic imbalance. L-arginine may be beneficial in acute clinical settings but shows potentially harmful effects when used long term, especially in older or chronically ill individuals. Beta-alanine has demonstrated safety and antioxidant properties that could protect kidney cells. In contrast, high or prolonged intake of BCAAs may contribute to insulin resistance and worsen renal outcomes in people with diabetes or hereditary kidney disorders.
Conclusions: When used appropriately by healthy individuals, these supplements are generally safe for kidney function. However, individual health status, dosage, and duration of use can significantly affect renal outcomes. BCAA supplementation, in particular, should be approached with caution in at-risk populations. More long-term studies are needed to fully assess the renal safety of these compounds in both athletic and clinical settings.
References
R. Cooper, F. Naclerio, J. Allgrove, and A. Jimenez, “Creatine supplementation with specific view to exercise/sports performance: an update.,” J Int Soc Sports Nutr, vol. 9, no. 1, p. 33, Jul. 2012, doi: 10.1186/1550-2783-9-33.
J. S. VOLEK et al., “Performance and muscle fiber adaptations to creatine supplementation and heavy resistance training,” Med Sci Sports Exerc, vol. 31, no. 8, pp. 1147–1156, Aug. 1999, doi: 10.1097/00005768-199908000-00011.
V. Pirola, L. Pisani, and P. Teruzzi, “[Evaluation of the recovery of muscular trophicity in aged patients with femoral fractures treated with creatine phosphate and physiokinesitherapy].,” Clin Ter, vol. 139, no. 3–4, pp. 115–9.
M. B. Cooke, E. Rybalka, A. D. Williams, P. J. Cribb, and A. Hayes, “Creatine supplementation enhances muscle force recovery after eccentrically-induced muscle damage in healthy individuals,” J Int Soc Sports Nutr, vol. 6, no. 1, Jan. 2009, doi: 10.1186/1550-2783-6-13.
J. Mielgo-Ayuso, J. Calleja-Gonzalez, D. Marqués-Jiménez, A. Caballero-García, A. Córdova, and D. Fernández-Lázaro, “Effects of Creatine Supplementation on Athletic Performance in Soccer Players: A Systematic Review and Meta-Analysis.,” Nutrients, vol. 11, no. 4, Mar. 2019, doi: 10.3390/nu11040757.
M. Wyss and R. Kaddurah-Daouk, “Creatine and Creatinine Metabolism,” Physiol Rev, vol. 80, no. 3, pp. 1107–1213, Jul. 2000, doi: 10.1152/physrev.2000.80.3.1107.
R. B. Kreider et al., “International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine,” J Int Soc Sports Nutr, vol. 14, no. 1, Jan. 2017, doi: 10.1186/s12970-017-0173-z.
I. Longobardi, B. Gualano, A. C. Seguro, and H. Roschel, “Is It Time for a Requiem for Creatine Supplementation-Induced Kidney Failure? A Narrative Review,” Nutrients, vol. 15, no. 6, p. 1466, Mar. 2023, doi: 10.3390/nu15061466.
A. de Souza E Silva et al., “Effects of Creatine Supplementation on Renal Function: A Systematic Review and Meta-Analysis.,” J Ren Nutr, vol. 29, no. 6, pp. 480–489, Nov. 2019, doi: 10.1053/j.jrn.2019.05.004.
R. Lugaresi et al., “Does long-term creatine supplementation impair kidney function in resistance-trained individuals consuming a high-protein diet?,” J Int Soc Sports Nutr, vol. 10, no. 1, p. 26, May 2013, doi: 10.1186/1550-2783-10-26.
B. Gualano et al., “Creatine supplementation does not impair kidney function in type 2 diabetic patients: a randomized, double-blind, placebo-controlled, clinical trial.,” Eur J Appl Physiol, vol. 111, no. 5, pp. 749–56, May 2011, doi: 10.1007/s00421-010-1676-3.
J. Pérez-Guisado and P. M. Jakeman, “Citrulline Malate Enhances Athletic Anaerobic Performance and Relieves Muscle Soreness,” J Strength Cond Res, vol. 24, no. 5, pp. 1215–1222, May 2010, doi: 10.1519/JSC.0b013e3181cb28e0.
A. Viribay, J. Fernández-Landa, A. Castañeda-Babarro, P. S. Collado, D. Fernández-Lázaro, and J. Mielgo-Ayuso, “Effects of Citrulline Supplementation on Different Aerobic Exercise Performance Outcomes: A Systematic Review and Meta-Analysis,” Nutrients, vol. 14, no. 17, p. 3479, Aug. 2022, doi: 10.3390/nu14173479.
H. Zhang et al., “The cyanobacterial ornithine–ammonia cycle involves an arginine dihydrolase,” Nat Chem Biol, vol. 14, no. 6, pp. 575–581, Jun. 2018, doi: 10.1038/s41589-018-0038-z.
V. Walker, “Ammonia Metabolism and Hyperammonemic Disorders,” 2014, pp. 73–150. doi: 10.1016/bs.acc.2014.09.002.
G. S. Ribas, F. F. Lopes, M. Deon, and C. R. Vargas, “Hyperammonemia in Inherited Metabolic Diseases,” Cell Mol Neurobiol, vol. 42, no. 8, pp. 2593–2610, Nov. 2022, doi: 10.1007/s10571-021-01156-6.
M. Zielonka, J. Probst, M. Carl, G. F. Hoffmann, S. Kölker, and J. G. Okun, “Bioenergetic dysfunction in a zebrafish model of acute hyperammonemic decompensation,” Exp Neurol, vol. 314, pp. 91–99, Apr. 2019, doi: 10.1016/j.expneurol.2019.01.008.
G. Davuluri et al., “Metabolic adaptation of skeletal muscle to hyperammonemia drives the beneficial effects of l-leucine in cirrhosis,” J Hepatol, vol. 65, no. 5, pp. 929–937, Nov. 2016, doi: 10.1016/j.jhep.2016.06.004.
C. R. Bosoi et al., “Systemic oxidative stress is implicated in the pathogenesis of brain edema in rats with chronic liver failure,” Free Radic Biol Med, vol. 52, no. 7, pp. 1228–1235, Apr. 2012, doi: 10.1016/j.freeradbiomed.2012.01.006.
C. Bachmann, “Mechanisms of Hyperammonemia,” Clin Chem Lab Med, vol. 40, no. 7, Jan. 2002, doi: 10.1515/CCLM.2002.112.
K. Nakamura et al., “Hyperammonemia in idiopathic epileptic seizure,” Am J Emerg Med, vol. 31, no. 10, pp. 1486–1489, Oct. 2013, doi: 10.1016/j.ajem.2013.08.003.
L. A. Gough et al., “A critical review of citrulline malate supplementation and exercise performance,” Eur J Appl Physiol, vol. 121, no. 12, pp. 3283–3295, Dec. 2021, doi: 10.1007/s00421-021-04774-6.
T. Allerton, D. Proctor, J. Stephens, T. Dugas, G. Spielmann, and B. Irving, “l-Citrulline Supplementation: Impact on Cardiometabolic Health,” Nutrients, vol. 10, no. 7, p. 921, Jul. 2018, doi: 10.3390/nu10070921.
S. J. Bailey, J. R. Blackwell, T. Lord, A. Vanhatalo, P. G. Winyard, and A. M. Jones, “l -Citrulline supplementation improves O 2 uptake kinetics and high-intensity exercise performance in humans,” J Appl Physiol, vol. 119, no. 4, pp. 385–395, Aug. 2015, doi: 10.1152/japplphysiol.00192.2014.
C. Moinard, I. Nicolis, N. Neveux, S. Darquy, S. Bénazeth, and L. Cynober, “Dose-ranging effects of citrulline administration on plasma amino acids and hormonal patterns in healthy subjects: the Citrudose pharmacokinetic study,” British Journal of Nutrition, vol. 99, no. 4, pp. 855–862, Apr. 2008, doi: 10.1017/S0007114507841110.
N. B. Rinde, I. T. Enoksen, T. Melsom, O. M. Fuskevåg, B. O. Eriksen, and J. V. Norvik, “Nitric Oxide Precursors and Dimethylarginines as Risk Markers for Accelerated Measured GFR Decline in the General Population,” Kidney Int Rep, vol. 8, no. 4, pp. 818–826, Apr. 2023, doi: 10.1016/j.ekir.2023.01.015.
O. Levillain, P. Parvy, and C. Hassler, “Amino acid handling in uremic rats: Citrulline, a reliable marker of renal insufficiency and proximal tubular dysfunction,” Metabolism, vol. 46, no. 6, pp. 611–618, Jun. 1997, doi: 10.1016/S0026-0495(97)90002-0.
H. Lee, H. B. Jang, M.-G. Yoo, S. I. Park, and H.-J. Lee, “Amino Acid Metabolites Associated with Chronic Kidney Disease: An Eight-Year Follow-Up Korean Epidemiology Study,” Biomedicines, vol. 8, no. 7, p. 222, Jul. 2020, doi: 10.3390/biomedicines8070222.
M. J. Romero et al., “l-Citrulline Protects from Kidney Damage in Type 1 Diabetic Mice,” Front Immunol, vol. 4, 2013, doi: 10.3389/fimmu.2013.00480.
N. Pahlavani et al., “The effect of l-arginine supplementation on body composition and performance in male athletes: a double-blinded randomized clinical trial,” Eur J Clin Nutr, vol. 71, no. 4, pp. 544–548, Apr. 2017, doi: 10.1038/ejcn.2016.266.
Z. Kavcı, M. Ozan, Y. Buzdağlı, A. Savaş, and H. Uçar, “Investigation of the effect of nitrate and L-arginine intake on aerobic, anaerobic performance, balance, agility, and recovery in elite taekwondo athletes,” J Int Soc Sports Nutr, vol. 22, no. 1, Dec. 2025, doi: 10.1080/15502783.2024.2445609.
S. J. Bailey et al., “Acute l -arginine supplementation reduces the O 2 cost of moderate-intensity exercise and enhances high-intensity exercise tolerance,” J Appl Physiol, vol. 109, no. 5, pp. 1394–1403, Nov. 2010, doi: 10.1152/japplphysiol.00503.2010.
S. M. Bode‐Böger, R. H. Böger, A. Galland, D. Tsikas, and J. C. Frölich, “L‐arginine‐induced vasodilation in healthy humans:pharmacokinetic–pharmacodynamic relationship,” Br J Clin Pharmacol, vol. 46, no. 5, pp. 489–497, Nov. 1998, doi: 10.1046/j.1365-2125.1998.00803.x.
I. Suzuki et al., “A combination of oral l-citrulline and l-arginine improved 10-min full-power cycling test performance in male collegiate soccer players: a randomized crossover trial,” Eur J Appl Physiol, vol. 119, no. 5, pp. 1075–1084, May 2019, doi: 10.1007/s00421-019-04097-7.
E. Schwedhelm et al., “Pharmacokinetic and pharmacodynamic properties of oral L‐citrulline and L‐arginine: impact on nitric oxide metabolism,” Br J Clin Pharmacol, vol. 65, no. 1, pp. 51–59, Jan. 2008, doi: 10.1111/j.1365-2125.2007.02990.x.
H. Speer, N. M. D’Cunha, M. J. Davies, A. J. McKune, and N. Naumovski, “The Physiological Effects of Amino Acids Arginine and Citrulline: Is There a Basis for Development of a Beverage to Promote Endurance Performance? A Narrative Review of Orally Administered Supplements,” Beverages, vol. 6, no. 1, p. 11, Feb. 2020, doi: 10.3390/beverages6010011.
M. Settergren, F. Böhm, R. E. Malmström, K. M. Channon, and J. Pernow, “L-arginine and tetrahydrobiopterin protects against ischemia/reperfusion-induced endothelial dysfunction in patients with type 2 diabetes mellitus and coronary artery disease.,” Atherosclerosis, vol. 204, no. 1, pp. 73–8, May 2009, doi: 10.1016/j.atherosclerosis.2008.08.034.
T. C. Wascher et al., “Effects of low-dose L-arginine on insulin-mediated vasodilatation and insulin sensitivity.,” Eur J Clin Invest, vol. 27, no. 8, pp. 690–5, Aug. 1997, doi: 10.1046/j.1365-2362.1997.1730718.x.
P. Lucotti et al., “Oral l-arginine supplementation improves endothelial function and ameliorates insulin sensitivity and inflammation in cardiopathic nondiabetic patients after an aortocoronary bypass,” Metabolism, vol. 58, no. 9, pp. 1270–1276, Sep. 2009, doi: 10.1016/j.metabol.2009.03.029.
P. Lucotti et al., “Beneficial effects of a long-term oral L-arginine treatment added to a hypocaloric diet and exercise training program in obese, insulin-resistant type 2 diabetic patients.,” Am J Physiol Endocrinol Metab, vol. 291, no. 5, pp. E906-12, Nov. 2006, doi: 10.1152/ajpendo.00002.2006.
Jonathan. P. Little, S. C. Forbes, D. G. Candow, S. M. Cornish, and P. D. Chilibeck, “Creatine, Arginine α-Ketoglutarate, Amino Acids, and Medium-Chain Triglycerides and Endurance and Performance,” Int J Sport Nutr Exerc Metab, vol. 18, no. 5, pp. 493–508, Oct. 2008, doi: 10.1123/ijsnem.18.5.493.
G. Angeli, T. L. de Barros, D. F. L. de Barros, and M. Lima, “Investigação dos efeitos da suplementação oral de arginina no aumento de força e massa muscular,” Revista Brasileira de Medicina do Esporte, vol. 13, no. 2, pp. 129–132, Apr. 2007, doi: 10.1590/S1517-86922007000200012.
L. Schramm et al., “L-Arginine deficiency and supplementation in experimental acute renal failure and in human kidney transplantation,” Kidney Int, vol. 61, no. 4, pp. 1423–1432, Apr. 2002, doi: 10.1046/j.1523-1755.2002.00268.x.
J. B. Kopp and P. E. Klotman, “Cellular and molecular mechanisms of cyclosporin nephrotoxicity.,” Journal of the American Society of Nephrology, vol. 1, no. 2, pp. 162–179, Aug. 1990, doi: 10.1681/ASN.V12162.
R. Schneider et al., “L-Arginine counteracts nitric oxide deficiency and improves the recovery phase of ischemic acute renal failure in rats,” Kidney Int, vol. 64, no. 1, pp. 216–225, Jul. 2003, doi: 10.1046/j.1523-1755.2003.00063.x.
L. De Nicola et al., “Randomized, double-blind, placebo-controlled study of arginine supplementation in chronic renal failure,” Kidney Int, vol. 56, no. 2, pp. 674–684, Aug. 1999, doi: 10.1046/j.1523-1755.1999.00582.x.
J. Huang, D. Ladeiras, Y. Yu, X.-F. Ming, and Z. Yang, “Detrimental Effects of Chronic L-Arginine Rich Food on Aging Kidney,” Front Pharmacol, vol. 11, Jan. 2021, doi: 10.3389/fphar.2020.582155.
A. M. Wilson, R. Harada, N. Nair, N. Balasubramanian, and J. P. Cooke, “l -Arginine Supplementation in Peripheral Arterial Disease,” Circulation, vol. 116, no. 2, pp. 188–195, Jul. 2007, doi: 10.1161/CIRCULATIONAHA.106.683656.
S. P. Schulman et al., “L-Arginine Therapy in Acute Myocardial Infarction,” JAMA, vol. 295, no. 1, p. 58, Jan. 2006, doi: 10.1001/jama.295.1.58.
E. T. Trexler et al., “International society of sports nutrition position stand: Beta-Alanine,” J Int Soc Sports Nutr, vol. 12, no. 1, Oct. 2015, doi: 10.1186/s12970-015-0090-y.
V. Ávila-Gandía, A. Torregrosa-García, S. Pérez-Piñero, R. Ortolano, M. S. Abellán-Ruiz, and F. J. López-Román, “One-Week High-Dose β-Alanine Loading Improves World Tour Cyclists’ Time-Trial Performance,” Nutrients, vol. 13, no. 8, p. 2543, Jul. 2021, doi: 10.3390/nu13082543.
A. A. Boldyrev, G. Aldini, and W. Derave, “Physiology and Pathophysiology of Carnosine,” Physiol Rev, vol. 93, no. 4, pp. 1803–1845, Oct. 2013, doi: 10.1152/physrev.00039.2012.
R. C. Harris et al., “The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis,” Amino Acids, vol. 30, no. 3, pp. 279–289, May 2006, doi: 10.1007/s00726-006-0299-9.
A. Baguet, K. Koppo, A. Pottier, and W. Derave, “β-Alanine supplementation reduces acidosis but not oxygen uptake response during high-intensity cycling exercise,” Eur J Appl Physiol, vol. 108, no. 3, pp. 495–503, Feb. 2010, doi: 10.1007/s00421-009-1225-0.
D. B. Zorov, M. Juhaszova, and S. J. Sollott, “Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release,” Physiol Rev, vol. 94, no. 3, pp. 909–950, Jul. 2014, doi: 10.1152/physrev.00026.2013.
A. R. Pavlov, A. A. Revina, A. M. Dupin, A. A. Boldyrev, and A. I. Yaropolov, “The mechanism of interaction of carnosine with superoxide radicals in water solutions,” Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 1157, no. 2, pp. 304–312, Jun. 1993, doi: 10.1016/0304-4165(93)90114-N.
M. T. A. Torreggiani, “A pulse radiolysis study of carnosine in aqueous solution,” Int J Radiat Biol, vol. 74, no. 3, pp. 333–340, Jan. 1998, doi: 10.1080/095530098141474.
I. Jukić et al., “Carnosine, Small but Mighty—Prospect of Use as Functional Ingredient for Functional Food Formulation,” Antioxidants, vol. 10, no. 7, p. 1037, Jun. 2021, doi: 10.3390/antiox10071037.
R. Nagai, D. B. Murray, T. O. Metz, and J. W. Baynes, “Chelation: A Fundamental Mechanism of Action of AGE Inhibitors, AGE Breakers, and Other Inhibitors of Diabetes Complications,” Diabetes, vol. 61, no. 3, pp. 549–559, Mar. 2012, doi: 10.2337/db11-1120.
A. Twarda-Clapa, A. Olczak, A. M. Białkowska, and M. Koziołkiewicz, “Advanced Glycation End-Products (AGEs): Formation, Chemistry, Classification, Receptors, and Diseases Related to AGEs,” Cells, vol. 11, no. 8, p. 1312, Apr. 2022, doi: 10.3390/cells11081312.
A. Negre‐Salvayre, C. Coatrieux, C. Ingueneau, and R. Salvayre, “Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors,” Br J Pharmacol, vol. 153, no. 1, pp. 6–20, Jan. 2008, doi: 10.1038/sj.bjp.0707395.
E. D. Pepper, M. J. Farrell, G. Nord, and S. E. Finkel, “Antiglycation Effects of Carnosine and Other Compounds on the Long-Term Survival of Escherichia coli,” Appl Environ Microbiol, vol. 76, no. 24, pp. 7925–7930, Dec. 2010, doi: 10.1128/AEM.01369-10.
I. Rashid, D. M. van Reyk, and M. J. Davies, “Carnosine and its constituents inhibit glycation of low‐density lipoproteins that promotes foam cell formation in vitro,” FEBS Lett, vol. 581, no. 5, pp. 1067–1070, Mar. 2007, doi: 10.1016/j.febslet.2007.01.082.
J. Pietkiewicz, A. Bronowicka-Szydełko, K. Dzierzba, R. Danielewicz, and A. Gamian, “Glycation of the Muscle-Specific Enolase by Reactive Carbonyls: Effect of Temperature and the Protection Role of Carnosine, Pirydoxamine and Phosphatidylserine,” Protein J, vol. 30, no. 3, pp. 149–158, Mar. 2011, doi: 10.1007/s10930-011-9307-3.
B. RAMAMURTHY, P. HÖÖK, A. D. JONES, and L. LARSSON, “Changes in myosin structure and function in response to glycation,” The FASEB Journal, vol. 15, no. 13, pp. 2415–2422, Nov. 2001, doi: 10.1096/fj.01-0183com.
T. L. Dutka and G. D. Lamb, “Effect of Carnosine on Excitation–Contraction Coupling in Mechanically-Skinned Rat Skeletal Muscle,” J Muscle Res Cell Motil, vol. 25, no. 3, pp. 203–213, Apr. 2004, doi: 10.1023/B:JURE.0000038265.37022.c5.
P. M. Bellinger and C. L. Minahan, “Performance effects of acute β ‐alanine induced paresthesia in competitive cyclists,” Eur J Sport Sci, vol. 16, no. 1, pp. 88–95, Feb. 2016, doi: 10.1080/17461391.2015.1005696.
S. MacPhee, I. N. Weaver, and D. F. Weaver, “An Evaluation of Interindividual Responses to the Orally Administered Neurotransmitter β -Alanine,” J Amino Acids, vol. 2013, pp. 1–5, Jun. 2013, doi: 10.1155/2013/429847.
Jr. , R. Dawson, M. Biasetti, S. Messina, and J. Dominy, “The cytoprotective role of taurine in exercise-induced muscle injury,” Amino Acids, vol. 22, no. 4, pp. 309–324, Jun. 2002, doi: 10.1007/s007260200017.
R. C. Harris et al., “The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis,” Amino Acids, vol. 30, no. 3, pp. 279–289, May 2006, doi: 10.1007/s00726-006-0299-9.
J. J. Matthews et al., “β ‐alanine supplementation in adults with overweight and obesity: a randomized controlled feasibility trial,” Obesity, vol. 33, no. 2, pp. 278–288, Feb. 2025, doi: 10.1002/oby.24204.
H. Wang et al., “Carnosine attenuates renal ischemia–reperfusion injury by inhibiting GPX4-mediated ferroptosis,” Int Immunopharmacol, vol. 124, p. 110850, Nov. 2023, doi: 10.1016/j.intimp.2023.110850.
Y. Cao et al., “Protective effect of carnosine on hydrogen peroxide–induced oxidative stress in human kidney tubular epithelial cells,” Biochem Biophys Res Commun, vol. 534, pp. 576–582, Jan. 2021, doi: 10.1016/j.bbrc.2020.11.037.
G. Aldini et al., “The carbonyl scavenger carnosine ameliorates dyslipidaemia and renal function in Zucker obese rats,” J Cell Mol Med, vol. 15, no. 6, pp. 1339–1354, Jun. 2011, doi: 10.1111/j.1582-4934.2010.01101.x.
T. Bo and J. Fujii, “Primary Roles of Branched Chain Amino Acids (BCAAs) and Their Metabolism in Physiology and Metabolic Disorders,” Molecules, vol. 30, no. 1, p. 56, Dec. 2024, doi: 10.3390/molecules30010056.
G. Howatson, M. Hoad, S. Goodall, J. Tallent, P. G. Bell, and D. N. French, “Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study,” J Int Soc Sports Nutr, vol. 9, no. 1, Feb. 2012, doi: 10.1186/1550-2783-9-20.
A. Fouré and D. Bendahan, “Is Branched-Chain Amino Acids Supplementation an Efficient Nutritional Strategy to Alleviate Skeletal Muscle Damage? A Systematic Review,” Nutrients, vol. 9, no. 10, p. 1047, Sep. 2017, doi: 10.3390/nu9101047.
M. Waldron, K. Whelan, O. Jeffries, D. Burt, L. Howe, and S. D. Patterson, “The effects of acute branched-chain amino acid supplementation on recovery from a single bout of hypertrophy exercise in resistance-trained athletes,” Applied Physiology, Nutrition, and Metabolism, vol. 42, no. 6, pp. 630–636, Jun. 2017, doi: 10.1139/apnm-2016-0569.
T. I. Gee and S. Deniel, “Branched-chain aminoacid supplementation attenuates a decrease in power-producing ability following acute strength training.,” J Sports Med Phys Fitness, vol. 56, no. 12, pp. 1511–1517, Dec. 2016.
G. Bianchi, R. Marzocchi, F. Agostini, and G. Marchesini, “Update on nutritional supplementation with branched-chain amino acids,” Curr Opin Clin Nutr Metab Care, vol. 8, no. 1, pp. 83–87, Jan. 2005, doi: 10.1097/00075197-200501000-00013.
X.-N. Zhang et al., “The effect of acute branched-chain amino acids ingestion on rate of force development in different time intervals: a controlled crossover study,” Front Nutr, vol. 11, Jan. 2025, doi: 10.3389/fnut.2024.1463202.
M. Gervasi et al., “Effects of a commercially available branched-chain amino acid-alanine-carbohydrate-based sports supplement on perceived exertion and performance in high intensity endurance cycling tests,” J Int Soc Sports Nutr, vol. 17, no. 1, Jan. 2020, doi: 10.1186/s12970-020-0337-0.
D. V. Martinho, H. Nobari, A. Faria, A. Field, D. Duarte, and H. Sarmento, “Oral Branched-Chain Amino Acids Supplementation in Athletes: A Systematic Review,” Nutrients, vol. 14, no. 19, p. 4002, Sep. 2022, doi: 10.3390/nu14194002.
M. Neinast, D. Murashige, and Z. Arany, “Branched Chain Amino Acids.,” Annu Rev Physiol, vol. 81, pp. 139–164, Feb. 2019, doi: 10.1146/annurev-physiol-020518-114455.
S. Fujita et al., “Nutrient signalling in the regulation of human muscle protein synthesis,” J Physiol, vol. 582, no. 2, pp. 813–823, Jul. 2007, doi: 10.1113/jphysiol.2007.134593.
H. C. Dreyer, S. Fujita, J. G. Cadenas, D. L. Chinkes, E. Volpi, and B. B. Rasmussen, “Resistance exercise increases AMPK activity and reduces 4E‐BP1 phosphorylation and protein synthesis in human skeletal muscle,” J Physiol, vol. 576, no. 2, pp. 613–624, Oct. 2006, doi: 10.1113/jphysiol.2006.113175.
M. S. Kaspy, S. J. Hannaian, Z. W. Bell, and T. A. Churchward-Venne, “The effects of branched-chain amino acids on muscle protein synthesis, muscle protein breakdown and associated molecular signalling responses in humans: an update,” Nutr Res Rev, vol. 37, no. 2, pp. 273–286, Dec. 2024, doi: 10.1017/S0954422423000197.
J. Pedroso, T. Zampieri, and J. Donato, “Reviewing the Effects of l-Leucine Supplementation in the Regulation of Food Intake, Energy Balance, and Glucose Homeostasis,” Nutrients, vol. 7, no. 5, pp. 3914–3937, May 2015, doi: 10.3390/nu7053914.
X. Deng et al., “Disruption of branched-chain amino acid homeostasis promotes the progression of DKD via enhancing inflammation and fibrosis-associated epithelial-mesenchymal transition,” Metabolism, vol. 162, p. 156037, Jan. 2025, doi: 10.1016/j.metabol.2024.156037.
S. DiMartino, M. P. Revelo, S. K. Mallipattu, and S. E. Piret, “Activation of branched chain amino acid catabolism protects against nephrotoxic acute kidney injury,” American Journal of Physiology-Renal Physiology, vol. 328, no. 1, pp. F152–F163, Jan. 2025, doi: 10.1152/ajprenal.00260.2024.
J. Yamamoto et al., “Branched-chain amino acids enhance cyst development in autosomal dominant polycystic kidney disease,” Kidney Int, vol. 92, no. 2, pp. 377–387, Aug. 2017, doi: 10.1016/j.kint.2017.01.021.
Views:
231
Downloads:
86
Copyright (c) 2025 Marta Korchowiec, Łukasz Bialic, Lidia Mądrzak, Katarzyna Krzyżanowska, Wiktor Chrzanowski, Julia Kwiecińska, Władysław Hryniuk, Jacek Sitkiewicz, Alicja Toczyłowska, Mateusz Muras

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.