IMPACT OF PHYSICAL ACTIVITY ON THE ANATOMY AND PHYSIOLOGY OF THE BRAIN IN CONTEXT OF ITS POTENTIAL USE IN THERAPY AND DISEASE PREVENTION
Abstract
Introduction an purpose of the research. Physical activity and exercise stimulate our brain on several levels, including improving neuroplasticity, while promoting the formation of new synaptic connections and reshaping its anatomical structures, particularly the hippocampus. The aim of the review was to determine the current state of knowledge about the impact of physical activity and exercise on brain function and their potential therapeutic use in dementia, Alzheimer's disease and depression.
Material and methods. The search process included searching PubMed and Google Scholar by keyword. The selection of articles was based on the title and abstract.
Results. Muscles, under the influence of movement, begin to produce myokines and other substances that affect the nervous system. Only some of them are able to cross the blood-brain barrier. They affect the formation of new synaptic connections and changing of the brain structure, in particular the hippocampus. A special place in muscle-brain communication is occupied by BDNF, which stimulates the process of neuroplasticity, tissue regeneration and cognitive functions, and its production is increased by the work of skeletal muscles. These changes impact the development of cognitive functions and counteract the pathomechanisms of some diseases, such as dementia or Alzheimer's disease. The positive effect of physical exercise in the treatment of depression has also been proven.
Conclusions. Processes occurring in the human body during physical exercise affect the structure and function of the brain. Some studies show promising results with incorporating exercise into the treatment of dementia, Alzheimer's disease and depression.
References
Adlard, P. A., Perreau, V. M., Pop, V., & Cotman, C. W. (2005). Voluntary Exercise Decreases Amyloid Load in a Transgenic Model of Alzheimer’s Disease. The Journal of Neuroscience, 25(17), 4217–4221. https://doi.org/10.1523/JNEUROSCI.0496-05.2005
Augusto-Oliveira, M., Arrifano, G. P., Leal-Nazaré, C. G., Santos-Sacramento, L., Lopes-Araújo, A., Royes, L. F. F., & Crespo-Lopez, M. E. (2023). Exercise Reshapes the Brain: Molecular, Cellular, and Structural Changes Associated with Cognitive Improvements. Molecular Neurobiology, 60(12), 6950–6974. https://doi.org/10.1007/s12035-023-03492-8
Boa Sorte Silva, N. C., Barha, C. K., Erickson, K. I., Kramer, A. F., & Liu-Ambrose, T. (2024). Physical exercise, cognition, and brain health in aging. Trends in Neurosciences, S0166223624000626. https://doi.org/10.1016/j.tins.2024.04.004
Breijyeh, Z., & Karaman, R. (2020). Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules, 25(24), 5789. https://doi.org/10.3390/molecules25245789
Chen, C., Beaunoyer, E., Guitton, M. J., & Wang, J. (2022). Physical Activity as a Clinical Tool against Depression: Opportunities and Challenges. Journal of Integrative Neuroscience, 21(5). https://doi.org/10.31083/j.jin2105132
Chen, F.-T., Hopman, R. J., Huang, C.-J., Chu, C.-H., Hillman, C. H., Hung, T.-M., & Chang, Y.-K. (2020). The Effect of Exercise Training on Brain Structure and Function in Older Adults: A Systematic Review Based on Evidence from Randomized Control Trials. Journal of Clinical Medicine, 9(4), 914. https://doi.org/10.3390/jcm9040914
De La Rosa, A., Olaso-Gonzalez, G., Arc-Chagnaud, C., Millan, F., Salvador-Pascual, A., García-Lucerga, C., Blasco-Lafarga, C., Garcia-Dominguez, E., Carretero, A., Correas, A. G., Viña, J., & Gomez-Cabrera, M. C. (2020a). Physical exercise in the prevention and treatment of Alzheimer’s disease. Journal of Sport and Health Science, 9(5), 394–404. https://doi.org/10.1016/j.jshs.2020.01.004
De La Rosa, A., Olaso-Gonzalez, G., Arc-Chagnaud, C., Millan, F., Salvador-Pascual, A., García-Lucerga, C., Blasco-Lafarga, C., Garcia-Dominguez, E., Carretero, A., Correas, A. G., Viña, J., & Gomez-Cabrera, M. C. (2020b). Physical exercise in the prevention and treatment of Alzheimer’s disease. Journal of Sport and Health Science, 9(5), 394–404. https://doi.org/10.1016/j.jshs.2020.01.004
Depressive disorder (depression). (b.d.). Pobrano 25 maj 2025, z https://www.who.int/news-room/fact-sheets/detail/depression
Devanne, H., & Allart, E. (2019). Boosting brain motor plasticity with physical exercise. Neurophysiologie Clinique, 49(2), 91–93. https://doi.org/10.1016/j.neucli.2019.01.003
Donnelly, J. E., Hillman, C. H., Castelli, D., Etnier, J. L., Lee, S., Tomporowski, P., Lambourne, K., & Szabo-Reed, A. N. (2016). Physical Activity, Fitness, Cognitive Function, and Academic Achievement in Children: A Systematic Review. Medicine & Science in Sports & Exercise, 48(6), 1197–1222. https://doi.org/10.1249/MSS.0000000000000901
Enette, L., Vogel, T., Merle, S., Valard-Guiguet, A.-G., Ozier-Lafontaine, N., Neviere, R., Leuly-Joncart, C., Fanon, J. L., & Lang, P. O. (2020). Effect of 9 weeks continuous vs. interval aerobic training on plasma BDNF levels, aerobic fitness, cognitive capacity and quality of life among seniors with mild to moderate Alzheimer’s disease: A randomized controlled trial. European Review of Aging and Physical Activity, 17(1), 2. https://doi.org/10.1186/s11556-019-0234-1
Erickson, K. I., Hillman, C., Stillman, C. M., Ballard, R. M., Bloodgood, B., Conroy, D. E., Macko, R., Marquez, D. X., Petruzzello, S. J., & Powell, K. E. (2019). Physical Activity, Cognition, and Brain Outcomes: A Review of the 2018 Physical Activity Guidelines. Medicine & Science in Sports & Exercise, 51(6), 1242–1251. https://doi.org/10.1249/MSS.0000000000001936
Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., Kim, J. S., Heo, S., Alves, H., White, S. M., Wojcicki, T. R., Mailey, E., Vieira, V. J., Martin, S. A., Pence, B. D., Woods, J. A., McAuley, E., & Kramer, A. F. (2011a). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences, 108(7), 3017–3022. https://doi.org/10.1073/pnas.1015950108
Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., Kim, J. S., Heo, S., Alves, H., White, S. M., Wojcicki, T. R., Mailey, E., Vieira, V. J., Martin, S. A., Pence, B. D., Woods, J. A., McAuley, E., & Kramer, A. F. (2011b). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences, 108(7), 3017–3022. https://doi.org/10.1073/pnas.1015950108
Han, X., Ashraf, M., Tipparaju, S. M., & Xuan, W. (2023). Muscle–Brain crosstalk in cognitive impairment. Frontiers in Aging Neuroscience, 15, 1221653. https://doi.org/10.3389/fnagi.2023.1221653
Harvey, S. B., Øverland, S., Hatch, S. L., Wessely, S., Mykletun, A., & Hotopf, M. (2018). Exercise and the Prevention of Depression: Results of the HUNT Cohort Study. American Journal of Psychiatry, 175(1), 28–36. https://doi.org/10.1176/appi.ajp.2017.16111223
Herold, F., Törpel, A., Schega, L., & Müller, N. G. (2019). Functional and/or structural brain changes in response to resistance exercises and resistance training lead to cognitive improvements – a systematic review. European Review of Aging and Physical Activity, 16(1), 10. https://doi.org/10.1186/s11556-019-0217-2
Iso-Markku, P., Kujala, U. M., Knittle, K., Polet, J., Vuoksimaa, E., & Waller, K. (2022). Physical activity as a protective factor for dementia and Alzheimer’s disease: Systematic review, meta-analysis and quality assessment of cohort and case–control studies. British Journal of Sports Medicine, 56(12), 701–709. https://doi.org/10.1136/bjsports-2021-104981
Kandola, A., Ashdown-Franks, G., Hendrikse, J., Sabiston, C. M., & Stubbs, B. (2019). Physical activity and depression: Towards understanding the antidepressant mechanisms of physical activity. Neuroscience & Biobehavioral Reviews, 107, 525–539. https://doi.org/10.1016/j.neubiorev.2019.09.040
Kou, X., Chen, D., & Chen, N. (2019). Physical Activity Alleviates Cognitive Dysfunction of Alzheimer’s Disease through Regulating the mTOR Signaling Pathway. International Journal of Molecular Sciences, 20(7), 1591. https://doi.org/10.3390/ijms20071591
López-Ortiz, S., Lista, S., Valenzuela, P. L., Pinto-Fraga, J., Carmona, R., Caraci, F., Caruso, G., Toschi, N., Emanuele, E., Gabelle, A., Nisticò, R., Garaci, F., Lucia, A., & Santos-Lozano, A. (2023). Effects of physical activity and exercise interventions on Alzheimer’s disease: An umbrella review of existing meta-analyses. Journal of Neurology, 270(2), 711–725. https://doi.org/10.1007/s00415-022-11454-8
Ohia-Nwoko, O., Montazari, S., Lau, Y.-S., & Eriksen, J. L. (2014). Long-term treadmill exercise attenuates tau pathology in P301S tau transgenic mice. Molecular Neurodegeneration, 9(1), 54. https://doi.org/10.1186/1750-1326-9-54
Oyovwi, M. O., Ogenma, U. T., & Onyenweny, A. (2025). Exploring the impact of exercise-induced BDNF on neuroplasticity in neurodegenerative and neuropsychiatric conditions. Molecular Biology Reports, 52(1), 140. https://doi.org/10.1007/s11033-025-10248-1
Pastor, D., Ballester-Ferrer, J. A., Carbonell-Hernández, L., Baladzhaeva, S., & Cervello, E. (2022). Physical Exercise and Cognitive Function. International Journal of Environmental Research and Public Health, 19(15), 9564. https://doi.org/10.3390/ijerph19159564
Philippot, A., Dubois, V., Lambrechts, K., Grogna, D., Robert, A., Jonckheer, U., Chakib, W., Beine, A., Bleyenheuft, Y., & De Volder, A. G. (2022). Impact of physical exercise on depression and anxiety in adolescent inpatients: A randomized controlled trial. Journal of Affective Disorders, 301, 145–153. https://doi.org/10.1016/j.jad.2022.01.011
Puderbaugh, M., & Emmady, P. D. (2025). Neuroplasticity. W StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK557811/
Russell, C. (2023). “We Can Do This!”: The Role of Physical Activity in What Comes Next for Dementia. International Journal of Environmental Research and Public Health, 20(15), 6503. https://doi.org/10.3390/ijerph20156503
Sanders, L. M. J., Hortobágyi, T., Karssemeijer, E. G. A., Van Der Zee, E. A., Scherder, E. J. A., & Van Heuvelen, M. J. G. (2020). Effects of low- and high-intensity physical exercise on physical and cognitive function in older persons with dementia: A randomized controlled trial. Alzheimer’s Research & Therapy, 12(1), 28. https://doi.org/10.1186/s13195-020-00597-3
Schuch, F. B., Vancampfort, D., Firth, J., Rosenbaum, S., Ward, P. B., Silva, E. S., Hallgren, M., Ponce De Leon, A., Dunn, A. L., Deslandes, A. C., Fleck, M. P., Carvalho, A. F., & Stubbs, B. (2018). Physical Activity and Incident Depression: A Meta-Analysis of Prospective Cohort Studies. American Journal of Psychiatry, 175(7), 631–648. https://doi.org/10.1176/appi.ajp.2018.17111194
Severinsen, M. C. K., & Pedersen, B. K. (2020). Muscle–Organ Crosstalk: The Emerging Roles of Myokines. Endocrine Reviews, 41(4), 594–609. https://doi.org/10.1210/endrev/bnaa016
Tartt, A. N., Mariani, M. B., Hen, R., Mann, J. J., & Boldrini, M. (2022). Dysregulation of adult hippocampal neuroplasticity in major depression: Pathogenesis and therapeutic implications. Molecular Psychiatry, 27(6), 2689–2699. https://doi.org/10.1038/s41380-022-01520-y
Thomas, A. G., Dennis, A., Bandettini, P. A., & Johansen-Berg, H. (2012). The Effects of Aerobic Activity on Brain Structure. Frontiers in Psychology, 3. https://doi.org/10.3389/fpsyg.2012.00086
Tisher, A., & Salardini, A. (2019). A Comprehensive Update on Treatment of Dementia. Seminars in Neurology, 39(02), 167–178. https://doi.org/10.1055/s-0039-1683408
Trifu, S. C., Trifu, A. C., Aluaş, E., Tătaru, M. A., & Costea, R. V. (2020). Brain changes in depression. Romanian Journal of Morphology and Embryology, 61(2), 361–370. https://doi.org/10.47162/RJME.61.2.06
Tsuk, S., Netz, Y., Dunsky, A., Zeev, A., Carasso, R., Dvolatzky, T., Salem, R., Behar, S., & Rotstein, A. (2019). The Acute Effect of Exercise on Executive Function and Attention: Resistance Versus Aerobic Exercise. Advances in Cognitive Psychology, 15(3), 208–215. https://doi.org/10.5709/acp-0269-7
Valenzuela, P. L., Castillo-García, A., Morales, J. S., De La Villa, P., Hampel, H., Emanuele, E., Lista, S., & Lucia, A. (2020). Exercise benefits on Alzheimer’s disease: State-of-the-science. Ageing Research Reviews, 62, 101108. https://doi.org/10.1016/j.arr.2020.101108
Vints, W. A. J., Levin, O., Fujiyama, H., Verbunt, J., & Masiulis, N. (2022). Exerkines and long-term synaptic potentiation: Mechanisms of exercise-induced neuroplasticity. Frontiers in Neuroendocrinology, 66, 100993. https://doi.org/10.1016/j.yfrne.2022.100993
Voss, M. W., Soto, C., Yoo, S., Sodoma, M., Vivar, C., & Van Praag, H. (2019). Exercise and Hippocampal Memory Systems. Trends in Cognitive Sciences, 23(4), 318–333. https://doi.org/10.1016/j.tics.2019.01.006
Zhang, F., Peng, W., Sweeney, J. A., Jia, Z., & Gong, Q. (2018). Brain structure alterations in depression: Psychoradiological evidence. CNS Neuroscience & Therapeutics, 24(11), 994–1003. https://doi.org/10.1111/cns.12835
Zhang, S., Zhen, K., Su, Q., Chen, Y., Lv, Y., & Yu, L. (2022). The Effect of Aerobic Exercise on Cognitive Function in People with Alzheimer’s Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. International Journal of Environmental Research and Public Health, 19(23), 15700. https://doi.org/10.3390/ijerph192315700
Zhao, J., Jiang, W., Wang, X., Cai, Z., Liu, Z., & Liu, G. (2020). Exercise, brain plasticity, and depression. CNS Neuroscience & Therapeutics, 26(9), 885–895. https://doi.org/10.1111/cns.13385
Views:
29
Downloads:
9
Copyright (c) 2025 Monika Dąbek, Monika Gajda-Bathelt, Julia Kulczycka, Paulina Sadkowska, Zuzanna Perlicka, Karolina Smolińska, Katarzyna Jania, Weronika Popow, Michał Ciołkosz, Tomasz Antczak

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.