THE ROLE OF THERAPY IN MODULATING THE SKIN MICROBIOME IN CHILDREN WITH ATOPIC DERMATITIS

Keywords: Atopic Dermatitis, Microbiota, Dysbiosis, S.aureus

Abstract

Objectives. Atopic dermatitis is a chronic dermatological condition characterized by epidermal barrier dysfunction, intensified pruritus, and the coexistence of other atopic diseases, most often beginning in early childhood. The disease has a multifactorial etiology involving genetic, immunological, and environmental factors, and is associated with reduced quality of life, particularly in children.

Methods. A literature review was performed using PubMed, Google Scholar, and ResearchGate for studies in Polish and English using the keywords “atopic dermatitis,” “dysbiosis,” “microbiota,” “skin microbiota,” and “S. aureus.” Incomplete, off-topic, methodologically insufficient, unreliable, or outdated studies were excluded.

Key findings. In children with atopic dermatitis, skin microbiota dysbiosis has been observed, manifested as reduced microbial diversity and a predominance of bacteria such as Staphylococcus aureus. In contrast, healthy skin exhibits a more diverse microbiome, with commensal bacteria like Staphylococcus epidermidis playing a crucial role in maintaining homeostasis. Dysbiosis in atopic dermatitis disrupts epidermal barrier function, exacerbates inflammatory symptoms, and facilitates colonization by pathogens. Skin microbiome fluctuations can vary depending on the therapy employed, including glucocorticosteroids, emollients, or biological treatments, which restore microbial balance.

Conclusions. Microbiome-modulating therapies show potential in alleviating clinical symptoms and supporting beneficial bacteria, yet research on the impact of microbiota on the progression of atopic dermatitis, especially in children, remains limited. Further studies are necessary to better understand the disease mechanisms, develop more targeted therapeutic approaches, and evaluate the long-term efficacy of microbiome-focused treatments.

References

Bylund, S., Kobyletzki, L. B., Svalstedt, M., et al. (2020). Prevalence and incidence of atopic dermatitis: A systematic review. Acta Dermato-Venereologica, 100(12), adv00160. https://doi.org/10.2340/00015555-3510

Maintz, L., Bieber, T., Simpson, H. D., et al. (2022). From skin barrier dysfunction to systemic impact of atopic dermatitis: Implications for a precision approach in dermocosmetics and medicine. Journal of Personalized Medicine, 12(6), 893. https://doi.org/10.3390/jpm12060893

Djurović, M. R., Janković, J., Ćirković, A., et al. (2020). Quality of life in infants with atopic dermatitis and their families. Postepy Dermatologii i Alergologii, 37(1), 66–72. https://doi.org/10.5114/ada.2020.93385

Hua, T., & Silverberg, J. I. (2019). Atopic dermatitis is associated with increased hospitalization in US children. Journal of the American Academy of Dermatology, 81(3), 862–865. https://doi.org/10.1016/j.jaad.2019.05.019

Langan, S. M., Irvine, A. D., & Weidinger, S. (2020). Atopic dermatitis. The Lancet, 396(10247), 345–360. https://doi.org/10.1016/S0140-6736(20)31286-1

Kong, H. H., Oh, J., Deming, C., et al. (2012). Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Research, 22, 850–859. https://doi.org/10.1101/gr.131029.111

Bjerre, R. D., Bandier, J., Skov, L., et al. (2017). The role of the skin microbiome in atopic dermatitis: A systematic review. British Journal of Dermatology, 177(5), 1272–1278. https://doi.org/10.1111/bjd.15390

Nakatsuji, T., Chen, T. H., Two, A. M., et al. (2016). Staphylococcus aureus exploits epidermal barrier defects in atopic dermatitis to trigger cytokine expression. Journal of Investigative Dermatology, 136(11), 2192–2200. https://doi.org/10.1016/j.jid.2016.05.127

Cheung, G. Y. C., Bae, J. S., & Otto, M. (2021). Pathogenicity and virulence of Staphylococcus aureus. Virulence, 12(1), 547–569. https://doi.org/10.1080/21505594.2021.1878688

Deng, L., Costa, F., Blake, K. J., et al. (2023). S. aureus drives itch and scratch-induced skin damage through a V8 protease-PAR1 axis. Cell, 186(24), 5375–5393.e25. https://doi.org/10.1016/j.cell.2023.10.019

Kennedy, E. A., Connolly, J., Hourihane, J. O., et al. (2017). Skin microbiome before development of atopic dermatitis: Early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year. Journal of Allergy and Clinical Immunology, 139(1), 166–172. https://doi.org/10.1016/j.jaci.2016.07.029

Nakatsuji, T., Chen, T. H., Narala, S., et al. (2017). Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Science Translational Medicine, 9 https://doi.org/10.1126/scitranslmed.aah4680

Kim, J., Kim, B. E., Goleva, E., et al. (2023). Alterations of epidermal lipid profiles and skin microbiome in children with atopic dermatitis. Allergy, Asthma & Immunology Research, 15(2), 186–200. https://doi.org/10.4168/aair.2023.15.2.186

Renz, H., & Skevaki, C. (2021). Early life microbial exposures and allergy risks: Opportunities for prevention. Nature Reviews Immunology, 21, 177–191. https://doi.org/10.1038/s41577-020-00420-y

Dominguez-Bello, M. G., Costello, E. K., Contreras, M., et al. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences of the United States of America, 107 (26), 11971–11975. https://doi.org/10.1073/pnas.1002601107

Rapin, A., Rehbinder, E. M., Macowan, M., et al. (2023). The skin microbiome in the first year of life and its association with atopic dermatitis. Allergy, 78(7), 1949–1963. https://doi.org/10.1111/all.15671

Levin, M. E., Botha, M., Basera, W., et al. (2020). Environmental factors associated with allergy in urban and rural children from the South African Food Allergy (SAFFA) cohort. Journal of Allergy and Clinical Immunology, 145, 415–426. https://doi.org/10.1016/j.jaci.2019.07.048

Leung, M. H. Y., Tong, X., Shen, Z., et al. (2023). Skin microbiome differentiates into distinct cutotypes with unique metabolic functions upon exposure to polycyclic aromatic hydrocarbons. Microbiome, 11(1), 124. https://doi.org/10.1186/s40168-023-01564-4

Gonzalez, M. E., Schaffer, J. V., Orlow, S. J., et al. (2016). Cutaneous microbiome effects of fluticasone propionate cream and adjunctive bleach baths in childhood atopic dermatitis. Journal of the American Academy of Dermatology, 75(3), 481–493.e8. https://doi.org/10.1016/j.jaad.2016.04.066

Tingting, L., Zhang, P., Yang, L., et al. (2025). The effects of topical antimicrobial-corticosteroid combination therapy in comparison to topical steroids alone on the skin microbiome of patients with atopic dermatitis. Journal of Dermatological Treatment, 36(1), 2470379. https://doi.org/10.1080/09546634.2025.2470379

Edslev, S. M., Agner, T., & Andersen, P. S. (2020). Skin microbiome in atopic dermatitis. Acta Dermato-Venereologica, 100(12), https://doi.org/10.2340/00015555-3514

Xu, Z., Liu, X., Niu, Y., et al. (2020). Skin benefits of moisturising body wash formulas for children with atopic dermatitis: A randomised controlled clinical study in China. Australasian Journal of Dermatology, 61(1), e54–e59. https://doi.org/10.1111/ajd.13153

Glatz, M., Jo, J. H., Kennedy, E. A., et al. (2018). Emollient use alters skin barrier and microbes in infants at risk for developing atopic dermatitis. PLoS ONE, 13(2), e0192443. https://doi.org/10.1371/journal.pone.0192443

Drucker, A. M., Ellis, A. G., Bohdanowicz, M., et al. (2020). Systemic immunomodulatory treatments for patients with atopic dermatitis: A systematic review and network meta-analysis. JAMA Dermatology, 156, 659–667. https://doi.org/10.1001/jamadermatol.2020.0796

Facheris, P., Jeffery, J., Del Duca, E., et al. (2023). The translational revolution in atopic dermatitis: The paradigm shift from pathogenesis to treatment. Cellular & Molecular Immunology, 20(5), 448–474. https://doi.org/10.1038/s41423-023-00992-4

Nowowiejska, J., Baran, A., & Flisiak, I. (2023). Lipid alterations and metabolism disturbances in selected inflammatory skin diseases. International Journal of Molecular Sciences, 24(8), 7053. https://doi.org/10.3390/ijms24087053

Möbus, L., Rodriguez, E., Harder, I., et al. (2022). Blood transcriptome profiling identifies 2 candidate endotypes of atopic dermatitis. Journal of Allergy and Clinical Immunology, 150(2), 385–395. https://doi.org/10.1016/j.jaci.2022.02.001

Simpson, E. L., Schlievert, P. M., Yoshida, T., et al. (2023). Rapid reduction in Staphylococcus aureus in atopic dermatitis subjects following dupilumab treatment. Journal of Allergy and Clinical Immunology, 152, 1179–1195. https://doi.org/10.1016/j.jaci.2023.05.026

Callewaert, C., Nakatsuji, T., Knight, R., et al. (2020). IL-4Rα blockade by dupilumab decreases Staphylococcus aureus colonization and increases microbial diversity in atopic dermatitis. Journal of Investigative Dermatology, 140(1), 191–202.e7. https://doi.org/10.1016/j.jid.2019.05.024

Hartmann, J., Moitinho-Silva, L., Sander, N., et al. (2023). Dupilumab but not cyclosporine treatment shifts the microbiome toward a healthy skin flora in patients with moderate-to-severe atopic dermatitis. Allergy, 78(8), 2290–2300. https://doi.org/10.1111/all.15742

Views:

33

Downloads:

16

Published
2025-06-27
Citations
How to Cite
Małgorzata Piśkiewicz, Weronika Duda, Emilia Majewska, Monika Domagała, Joanna Wiewióra, Izabela Domańska, & Aleksandra Sagan. (2025). THE ROLE OF THERAPY IN MODULATING THE SKIN MICROBIOME IN CHILDREN WITH ATOPIC DERMATITIS. International Journal of Innovative Technologies in Social Science, (2(46). https://doi.org/10.31435/ijitss.2(46).2025.3331