THE ROLE OF THERAPY IN MODULATING THE SKIN MICROBIOME IN CHILDREN WITH ATOPIC DERMATITIS
Abstract
Objectives. Atopic dermatitis is a chronic dermatological condition characterized by epidermal barrier dysfunction, intensified pruritus, and the coexistence of other atopic diseases, most often beginning in early childhood. The disease has a multifactorial etiology involving genetic, immunological, and environmental factors, and is associated with reduced quality of life, particularly in children.
Methods. A literature review was performed using PubMed, Google Scholar, and ResearchGate for studies in Polish and English using the keywords “atopic dermatitis,” “dysbiosis,” “microbiota,” “skin microbiota,” and “S. aureus.” Incomplete, off-topic, methodologically insufficient, unreliable, or outdated studies were excluded.
Key findings. In children with atopic dermatitis, skin microbiota dysbiosis has been observed, manifested as reduced microbial diversity and a predominance of bacteria such as Staphylococcus aureus. In contrast, healthy skin exhibits a more diverse microbiome, with commensal bacteria like Staphylococcus epidermidis playing a crucial role in maintaining homeostasis. Dysbiosis in atopic dermatitis disrupts epidermal barrier function, exacerbates inflammatory symptoms, and facilitates colonization by pathogens. Skin microbiome fluctuations can vary depending on the therapy employed, including glucocorticosteroids, emollients, or biological treatments, which restore microbial balance.
Conclusions. Microbiome-modulating therapies show potential in alleviating clinical symptoms and supporting beneficial bacteria, yet research on the impact of microbiota on the progression of atopic dermatitis, especially in children, remains limited. Further studies are necessary to better understand the disease mechanisms, develop more targeted therapeutic approaches, and evaluate the long-term efficacy of microbiome-focused treatments.
References
Bylund, S., Kobyletzki, L. B., Svalstedt, M., et al. (2020). Prevalence and incidence of atopic dermatitis: A systematic review. Acta Dermato-Venereologica, 100(12), adv00160. https://doi.org/10.2340/00015555-3510
Maintz, L., Bieber, T., Simpson, H. D., et al. (2022). From skin barrier dysfunction to systemic impact of atopic dermatitis: Implications for a precision approach in dermocosmetics and medicine. Journal of Personalized Medicine, 12(6), 893. https://doi.org/10.3390/jpm12060893
Djurović, M. R., Janković, J., Ćirković, A., et al. (2020). Quality of life in infants with atopic dermatitis and their families. Postepy Dermatologii i Alergologii, 37(1), 66–72. https://doi.org/10.5114/ada.2020.93385
Hua, T., & Silverberg, J. I. (2019). Atopic dermatitis is associated with increased hospitalization in US children. Journal of the American Academy of Dermatology, 81(3), 862–865. https://doi.org/10.1016/j.jaad.2019.05.019
Langan, S. M., Irvine, A. D., & Weidinger, S. (2020). Atopic dermatitis. The Lancet, 396(10247), 345–360. https://doi.org/10.1016/S0140-6736(20)31286-1
Kong, H. H., Oh, J., Deming, C., et al. (2012). Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Research, 22, 850–859. https://doi.org/10.1101/gr.131029.111
Bjerre, R. D., Bandier, J., Skov, L., et al. (2017). The role of the skin microbiome in atopic dermatitis: A systematic review. British Journal of Dermatology, 177(5), 1272–1278. https://doi.org/10.1111/bjd.15390
Nakatsuji, T., Chen, T. H., Two, A. M., et al. (2016). Staphylococcus aureus exploits epidermal barrier defects in atopic dermatitis to trigger cytokine expression. Journal of Investigative Dermatology, 136(11), 2192–2200. https://doi.org/10.1016/j.jid.2016.05.127
Cheung, G. Y. C., Bae, J. S., & Otto, M. (2021). Pathogenicity and virulence of Staphylococcus aureus. Virulence, 12(1), 547–569. https://doi.org/10.1080/21505594.2021.1878688
Deng, L., Costa, F., Blake, K. J., et al. (2023). S. aureus drives itch and scratch-induced skin damage through a V8 protease-PAR1 axis. Cell, 186(24), 5375–5393.e25. https://doi.org/10.1016/j.cell.2023.10.019
Kennedy, E. A., Connolly, J., Hourihane, J. O., et al. (2017). Skin microbiome before development of atopic dermatitis: Early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year. Journal of Allergy and Clinical Immunology, 139(1), 166–172. https://doi.org/10.1016/j.jaci.2016.07.029
Nakatsuji, T., Chen, T. H., Narala, S., et al. (2017). Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Science Translational Medicine, 9 https://doi.org/10.1126/scitranslmed.aah4680
Kim, J., Kim, B. E., Goleva, E., et al. (2023). Alterations of epidermal lipid profiles and skin microbiome in children with atopic dermatitis. Allergy, Asthma & Immunology Research, 15(2), 186–200. https://doi.org/10.4168/aair.2023.15.2.186
Renz, H., & Skevaki, C. (2021). Early life microbial exposures and allergy risks: Opportunities for prevention. Nature Reviews Immunology, 21, 177–191. https://doi.org/10.1038/s41577-020-00420-y
Dominguez-Bello, M. G., Costello, E. K., Contreras, M., et al. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences of the United States of America, 107 (26), 11971–11975. https://doi.org/10.1073/pnas.1002601107
Rapin, A., Rehbinder, E. M., Macowan, M., et al. (2023). The skin microbiome in the first year of life and its association with atopic dermatitis. Allergy, 78(7), 1949–1963. https://doi.org/10.1111/all.15671
Levin, M. E., Botha, M., Basera, W., et al. (2020). Environmental factors associated with allergy in urban and rural children from the South African Food Allergy (SAFFA) cohort. Journal of Allergy and Clinical Immunology, 145, 415–426. https://doi.org/10.1016/j.jaci.2019.07.048
Leung, M. H. Y., Tong, X., Shen, Z., et al. (2023). Skin microbiome differentiates into distinct cutotypes with unique metabolic functions upon exposure to polycyclic aromatic hydrocarbons. Microbiome, 11(1), 124. https://doi.org/10.1186/s40168-023-01564-4
Gonzalez, M. E., Schaffer, J. V., Orlow, S. J., et al. (2016). Cutaneous microbiome effects of fluticasone propionate cream and adjunctive bleach baths in childhood atopic dermatitis. Journal of the American Academy of Dermatology, 75(3), 481–493.e8. https://doi.org/10.1016/j.jaad.2016.04.066
Tingting, L., Zhang, P., Yang, L., et al. (2025). The effects of topical antimicrobial-corticosteroid combination therapy in comparison to topical steroids alone on the skin microbiome of patients with atopic dermatitis. Journal of Dermatological Treatment, 36(1), 2470379. https://doi.org/10.1080/09546634.2025.2470379
Edslev, S. M., Agner, T., & Andersen, P. S. (2020). Skin microbiome in atopic dermatitis. Acta Dermato-Venereologica, 100(12), https://doi.org/10.2340/00015555-3514
Xu, Z., Liu, X., Niu, Y., et al. (2020). Skin benefits of moisturising body wash formulas for children with atopic dermatitis: A randomised controlled clinical study in China. Australasian Journal of Dermatology, 61(1), e54–e59. https://doi.org/10.1111/ajd.13153
Glatz, M., Jo, J. H., Kennedy, E. A., et al. (2018). Emollient use alters skin barrier and microbes in infants at risk for developing atopic dermatitis. PLoS ONE, 13(2), e0192443. https://doi.org/10.1371/journal.pone.0192443
Drucker, A. M., Ellis, A. G., Bohdanowicz, M., et al. (2020). Systemic immunomodulatory treatments for patients with atopic dermatitis: A systematic review and network meta-analysis. JAMA Dermatology, 156, 659–667. https://doi.org/10.1001/jamadermatol.2020.0796
Facheris, P., Jeffery, J., Del Duca, E., et al. (2023). The translational revolution in atopic dermatitis: The paradigm shift from pathogenesis to treatment. Cellular & Molecular Immunology, 20(5), 448–474. https://doi.org/10.1038/s41423-023-00992-4
Nowowiejska, J., Baran, A., & Flisiak, I. (2023). Lipid alterations and metabolism disturbances in selected inflammatory skin diseases. International Journal of Molecular Sciences, 24(8), 7053. https://doi.org/10.3390/ijms24087053
Möbus, L., Rodriguez, E., Harder, I., et al. (2022). Blood transcriptome profiling identifies 2 candidate endotypes of atopic dermatitis. Journal of Allergy and Clinical Immunology, 150(2), 385–395. https://doi.org/10.1016/j.jaci.2022.02.001
Simpson, E. L., Schlievert, P. M., Yoshida, T., et al. (2023). Rapid reduction in Staphylococcus aureus in atopic dermatitis subjects following dupilumab treatment. Journal of Allergy and Clinical Immunology, 152, 1179–1195. https://doi.org/10.1016/j.jaci.2023.05.026
Callewaert, C., Nakatsuji, T., Knight, R., et al. (2020). IL-4Rα blockade by dupilumab decreases Staphylococcus aureus colonization and increases microbial diversity in atopic dermatitis. Journal of Investigative Dermatology, 140(1), 191–202.e7. https://doi.org/10.1016/j.jid.2019.05.024
Hartmann, J., Moitinho-Silva, L., Sander, N., et al. (2023). Dupilumab but not cyclosporine treatment shifts the microbiome toward a healthy skin flora in patients with moderate-to-severe atopic dermatitis. Allergy, 78(8), 2290–2300. https://doi.org/10.1111/all.15742
Views:
33
Downloads:
16
Copyright (c) 2025 Małgorzata Piśkiewicz, Weronika Duda, Emilia Majewska, Monika Domagała, Joanna Wiewióra, Izabela Domańska, Aleksandra Sagan

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.