REAL-WORLD APPLICATIONS OF DIGITAL TWIN TECHNOLOGY IN PERFORMANCE MANAGEMENT: LESSONS FROM GLOBAL HEALTHCARE CASE STUDIES
Abstract
Digital twin technology is revolutionizing healthcare by providing a real-time digital replica of hospital systems, enabling better decision-making and performance optimization. This study examines the implementation of digital twin models in healthcare through an analysis of four real-world case studies: The Moorfields Eye Hospital (UK), Singapore General Hospital, Duke Health (USA), and The Karolinska University Hospital (Sweden). By reviewing these cases, the study highlights their impact on operational efficiency, resource utilization, and patient care outcomes. Challenges faced during implementation and key lessons learned are discussed to guide future adoption of digital twin technology in healthcare.
References
Abayadeera, M. R. (2024). Digital Twin Technology: A Comprehensive Review. International Journal of Scientific Research and Engineering Trends, 10(4), 1485–1504. https://doi.org/10.61137/ijsret.vol.10.issue4.199
Acharya, S., Khan, A. A., & Päivärinta, T. (2024). Interoperability levels and challenges of digital twins in cyber-physical systems. Journal of Industrial Information Integration, 100714. https://doi.org/10.1016/j.jii.2024.100714
Achouch, M., Dimitrova, M., Ziane, K., Karganroudi, S. S., Dhouib, R., Ibrahim, H., & Adda, M. (2022). On Predictive Maintenance in Industry 4.0: Overview, models, and challenges. Applied Sciences, 12(16), 8081. https://doi.org/10.3390/app12168081
Adibi, S., Rajabifard, A., Shojaei, D., & Wickramasinghe, N. (2024). Enhancing Healthcare through Sensor-Enabled Digital Twins in Smart Environments: A Comprehensive Analysis. Sensors, 24(9), 2793. https://doi.org/10.3390/s24092793
Al-Assaf, K., Alzahmi, W., Alshaikh, R., Bahroun, Z., & Ahmed, V. (2024). The relative importance of key factors for integrating Enterprise Resource planning (ERP) systems and performance management practices in the UAE healthcare sector. Big Data and Cognitive Computing, 8(9), 122. https://doi.org/10.3390/bdcc8090122
Asciak, L., Kyeremeh, J., Luo, X., Kazakidi, A., Connolly, P., Picard, F., O’Neill, K., Tsaftaris, S. A., Stewart, G. D., & Shu, W. (2025). Digital twin assisted surgery, concept, opportunities, and challenges. Npj Digital Medicine, 8(1). https://doi.org/10.1038/s41746-024-01413-0
Attaran, M., & Celik, B. G. (2023). Digital Twin: Benefits, use cases, challenges, and opportunities. Decision Analytics Journal, 6, 100165. https://doi.org/10.1016/j.dajour.2023.100165
Attaran, S., & Attaran, M. (2024). Advancing healthcare through the integration of digital twins technology: personalized medicine’s next frontier. Future Internet, 16(12), 477. https://doi.org/10.3390/fi16120477
Dihan, M. S., Akash, A. I., Tasneem, Z., Das, P., Das, S. K., Islam, M. R., Islam, M. M., Badal, F. R., Ali, M. F., Ahamed, M. H., Abhi, S. H., Sarker, S. K., & Hasan, M. M. (2024). Digital twin: Data exploration, architecture, implementation and future. Heliyon, 10(5), e26503. https://doi.org/10.1016/j.heliyon.2024.e26503
Effective bed management system at Singapore General Hospital. (2024, November 1). SMU Newsroom. https://news.smu.edu.sg/news/2024/11/01/effective-bed-management-system-singapore-general-hospital-0
Eumi, E. M. (2024). A systematic review of Digital Twins in efficient pandemic management with challenges and emerging trends. Decision Analytics Journal, 12, 100502. https://doi.org/10.1016/j.dajour.2024.100502
Göras, C., Olin, K., Unbeck, M., Pukk-Härenstam, K., Ehrenberg, A., Tessma, M. K., Nilsson, U., & Ekstedt, M. (2019). Tasks, multitasking and interruptions among the surgical team in an operating room: a prospective observational study. BMJ Open, 9(5), e026410. https://doi.org/10.1136/bmjopen-2018-026410
Guilcher, S. J. T., Bai, Y. Q., Wodchis, W. P., Bronskill, S. E., Rashidian, L., & Kuluski, K. (2024). What happened to the patients? Care trajectories for persons with a delayed hospital discharge during wave 1 of COVID-19 in Ontario, Canada; a population-based retrospective cohort study. PLoS ONE, 19(9), e0309155. https://doi.org/10.1371/journal.pone.0309155
Haleem, A., Javaid, M., Singh, R. P., & Suman, R. (2023). Exploring the revolution in healthcare systems through the applications of digital twin technology. Biomedical Technology, 4, 28–38. https://doi.org/10.1016/j.bmt.2023.02.001
Harbi, S. A., Aljohani, B., Elmasry, L., Baldovino, F. L., Raviz, K. B., Altowairqi, L., & Alshlowi, S. (2024). Streamlining patient flow and enhancing operational efficiency through case management implementation. BMJ Open Quality, 13(1), e002484. https://doi.org/10.1136/bmjoq-2023-002484
Javaid, M., Haleem, A., & Suman, R. (2023). Digital Twin applications toward Industry 4.0: A Review. Cognitive Robotics, 3, 71–92. https://doi.org/10.1016/j.cogr.2023.04.003
Kulkov, I., Ivanova-Gongne, M., Bertello, A., Makkonen, H., Kulkova, J., Rohrbeck, R., & Ferraris, A. (2023). Technology entrepreneurship in healthcare: Challenges and opportunities for value creation. Journal of Innovation & Knowledge, 8(2), 100365. https://doi.org/10.1016/j.jik.2023.100365
Lam, S. S. W., Pourghaderi, A. R., Abdullah, H. R., Nguyen, F. N. H. L., Siddiqui, F. J., Ansah, J. P., Low, J. G., Matchar, D. B., & Ong, M. E. H. (2022). An agile systems modeling framework for bed resource planning during COVID-19 Pandemic in Singapore. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.714092
Lyng, H. B., Macrae, C., Guise, V., Haraldseid-Driftland, C., Fagerdal, B., Schibevaag, L., Alsvik, J. G., & Wiig, S. (2021). Balancing adaptation and innovation for resilience in healthcare – a metasynthesis of narratives. BMC Health Services Research, 21(1). https://doi.org/10.1186/s12913-021-06592-0
Mchirgui, N., Quadar, N., Kraiem, H., & Lakhssassi, A. (2024). The Applications and Challenges of Digital twin Technology in Smart Grids: A Comprehensive review. Applied Sciences, 14(23), 10933. https://doi.org/10.3390/app142310933
Meijer, C., Uh, H., & Bouhaddani, S. E. (2023). Digital twins in healthcare: Methodological challenges and opportunities. Journal of Personalized Medicine, 13(10), 1522. https://doi.org/10.3390/jpm13101522
Moorfields Eye Hospital (NHS) - Moorfields Eye Hospital. (n.d.). https://www.moorfields.nhs.uk/
Papachristou, K., Katsakiori, P. F., Papadimitroulas, P., Strigari, L., & Kagadis, G. C. (2024). Digital twins’ advancements and applications in healthcare, towards precision medicine. Journal of Personalized Medicine, 14(11), 1101. https://doi.org/10.3390/jpm14111101
Pool, J., Akhlaghpour, S., Fatehi, F., & Burton-Jones, A. (2023). A systematic analysis of failures in protecting personal health data: A scoping review. International Journal of Information Management, 74, 102719. https://doi.org/10.1016/j.ijinfomgt.2023.102719
Qian, L. (2023). Research on the influence of hospitalization satisfaction of surgical patients based on 5W1H theory. PubMed, 27(11), 4848–4856. https://doi.org/10.26355/eurrev_202306_32601
Sandhu, S., Sendak, M. P., Ratliff, W., Knechtle, W., Fulkerson, W. J., & Balu, S. (2023). Accelerating health system innovation: principles and practices from the Duke Institute for Health Innovation. Patterns, 4(4), 100710. https://doi.org/10.1016/j.patter.2023.100710
Scholkmann, A. B. (2021). Resistance to (Digital) change. In Springer eBooks (pp. 219–236). https://doi.org/10.1007/978-3-030-55878-9_13
Seth, I., Lim, B., Lu, P. Y. J., Xie, Y., Cuomo, R., Ng, S. K., Rozen, W. M., & Sofiadellis, F. (2024). Digital Twins Use in Plastic Surgery: A Systematic review. Journal of Clinical Medicine, 13(24), 7861. https://doi.org/10.3390/jcm13247861
Sharma, A., Kosasih, E., Zhang, J., Brintrup, A., & Calinescu, A. (2022). Digital Twins: State of the art theory and practice, challenges, and open research questions. Journal of Industrial Information Integration, 30, 100383. https://doi.org/10.1016/j.jii.2022.100383
Sreedharan, J., Subbarayalu, A. V., Kamalasanan, A., Albalawi, I., Krishna, G. G., Alahmari, A. D., Alsalamah, J. A., Alkhathami, M., Alenezi, M., Alqahtani, A., Alahmari, M., Phillips, M. R., & MacDonald, J. (2024). Key Performance Indicators: A framework for allied healthcare educational institutions. ClinicoEconomics and Outcomes Research, Volume 16, 173–185. https://doi.org/10.2147/ceor.s446614
Sun, T., He, X., & Li, Z. (2023). Digital twin in healthcare: Recent updates and challenges. Digital Health, 9. https://doi.org/10.1177/20552076221149651
Tan, C. C., Lam, C. S. P., Matchar, D. B., Zee, Y. K., & Wong, J. E. L. (2021). Singapore’s health-care system: key features, challenges, and shifts. The Lancet, 398(10305), 1091–1104. https://doi.org/10.1016/s0140-6736(21)00252-x
Tripathi, N., Hietala, H., Xu, Y., & Liyanage, R. (2024). Stakeholders collaborations, challenges and emerging concepts in digital twin ecosystems. Information and Software Technology, 169, 107424. https://doi.org/10.1016/j.infsof.2024.107424
Zhang, K., Zhou, H., Baptista-Hon, D. T., Gao, Y., Liu, X., Oermann, E., Xu, S., Jin, S., Zhang, J., Sun, Z., Yin, Y., Razmi, R. M., Loupy, A., Beck, S., Qu, J., & Wu, J. (2024). Concepts and applications of digital twins in healthcare and medicine. Patterns, 5(8), 101028. https://doi.org/10.1016/j.patter.2024.101028
Views:
73
Downloads:
40
Copyright (c) 2025 Chouguiat Belmallem Saliha, Koudoua Ferhati

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.