IMPAIRED OSTEOGENESIS AS A LINK IN THE CHAIN OF ATHEROSCLEROSIS IN PATIENTS WITH TYPE 2 DIABETES MELLITUS: PATHWAYS TO OVERCOMING IT
Abstract
Cardiovascular diseases in patients with type 2 diabetes mellitus exhibit a more aggressive course compared to those without this metabolic disorder. Concurrently, shared mechanisms exist between bone tissue development and atherosclerotic arterial calcification. The aim of this study was to establish potential associations between osteocalcin levels and cardiovascular complications in patients with type 2 diabetes mellitus, as well as the impact of additional glucose-lowering therapy using glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and sodium-glucose cotransporter-2 inhibitors (SGLT2is). Methods. A total of 99 patients with type 2 diabetes mellitus were examined, including 62 men and 37 women. The mean age of the participants was 59.18 ± 1.32 years (range: 46 to 67 years). Patients had no documented history of severe cardiovascular complications, such as myocardial infarction, stroke, or stenting/bypass of coronary, carotid, or peripheral arteries. Among them, 34 patients received GLP-1 RAs in addition to baseline therapy with metformin and sulfonylurea derivatives for one year, while 25 received SGLT2is. Osteocalcin levels were measured, and echocardiographic examinations were performed. Results. Low serum osteocalcin levels were associated with the development of diastolic dysfunction characterized by impaired relaxation, left ventricular hypertrophy, and atherosclerotic aortic wall involvement in patients without clinical signs of cardiovascular disease. This was not observed in patients with type 2 diabetes mellitus who had higher osteocalcin levels. Additional use of GLP-1 RAs with baseline glucose-lowering therapy significantly increased blood osteocalcin levels. Additional use of SGLT2is did not demonstrate changes in osteocalcin levels. Conclusion. Low serum osteocalcin levels in patients with type 2 diabetes mellitus may be considered a marker for future severe cardiovascular diseases. Additional use of GLP-1 RAs with baseline glucose-lowering therapy increases blood osteocalcin levels, indicating a positive impact on the cardiovascular system.
References
Høilund-Carlsen, P. F., Piri, R., Madsen, P. L., Revheim, M.-E., Werner, T. J., Alavi, A., Gerke, O., & Sturek, M. (2022). Atherosclerosis burdens in diabetes mellitus: Assessment by PET imaging. International Journal of Molecular Sciences, 23(18), Article 10268. https://doi.org/10.3390/ijms231810268
Rashdan, N. A., Sim, A. M., Cui, L., Phadwal, K., Fleming, V. A., Linden, J., Bartkeviciute, M., Kirby, D. J., Link, V. M., Nikolaou, N., Didangelos, A., MacRae, V. E., & Farquharson, C. (2020). Osteocalcin regulates arterial calcification via altered Wnt signaling and glucose metabolism. Journal of Bone and Mineral Research, 35(2), 357–367. https://doi.org/10.1002/jbmr.3888
Wen, L., Chen, J., Duan, L., & Li, S. (2018). Vitamin K-dependent proteins involved in bone and cardiovascular health (Review). Molecular Medicine Reports, 18(1), 3–15. https://doi.org/10.3892/mmr.2018.8940
Roumeliotis, S., Roumeliotis, A., Dounousi, E., Eleftheriadis, T., & Liakopoulos, V. (2020). Biomarkers of vascular calcification in serum. Advances in Clinical Chemistry, 98, 91–147. https://doi.org/10.1016/bs.acc.2020.02.004
Chi, P.-J., Lin, Y.-L., Tsai, J.-P., Wang, C.-H., Hou, J.-S., Lee, C.-J., & Hsu, B.-G. (2019). Osteocalcin and carotid–femoral pulse wave velocity in patients on peritoneal dialysis. Tzu Chi Medical Journal, 31(1), 23–28. https://doi.org/10.4103/tcmj.tcmj_12_18
Mykhailovska, N. S., Stetsiuk, I. O., Kulynych, T. O., Gorbachova, S. V., & Zhulkevych, I. V. (2020). The interrelationship of bone and cardiovascular remodeling biomarkers and clinical peculiarities of coronary artery disease in postmenopausal women. Reumatologia, 58(3), 142–149. https://doi.org/10.5114/reum.2020.96687
Seidu, S., Kunutsor, S. K., & Khunti, K. (2019). Association of circulating osteocalcin with cardiovascular disease and intermediate cardiovascular phenotypes: Systematic review and meta-analysis. Scandinavian Cardiovascular Journal, 53(6), 286–295. https://doi.org/10.1080/14017431.2019.1655166
Wen, L., Chen, J., Duan, L., & Li, S. (2018). Vitamin K-dependent proteins involved in bone and cardiovascular health (Review). Molecular Medicine Reports, 18(1), 3–15. https://doi.org/10.3892/mmr.2018.8940
Zhang, X. L., Shen, Y., Ma, X. J., Zhou, Z., Zou, Y. L., Wang, J. L., Lin, J., Liu, Z. H., & Fei, X. F. (2019). Low serum osteocalcin levels are correlated with left ventricular systolic dysfunction and cardiac death in Chinese men. Acta Pharmacologica Sinica, 40(4), 486–491. https://doi.org/10.1038/s41401-018-0080-0
Seidu, S., Kunutsor, S. K., & Khunti, K. (2019). Association of circulating osteocalcin with cardiovascular disease and intermediate cardiovascular phenotypes: Systematic review and meta-analysis. Scandinavian Cardiovascular Journal, 53(6), 286–295. https://doi.org/10.1080/14017431.2019.1655166
Qaradakhi, T., Gadanec, L. K., Tacey, A. B., Hare, D. L., Buxton, B. F., Apostolopoulos, V., Levinger, I., & Zulli, A. (2019). The effect of recombinant undercarboxylated osteocalcin on endothelial dysfunction. Calcified Tissue International, 105(5), 546–556. https://doi.org/10.1007/s00223-019-00600-6
Yang, R., Ma, X., Dou, J., Wang, F., Luo, Y., Li, D., Zhu, J., Bao, Y., & Jia, W. (2013). Relationship between serum osteocalcin levels and carotid intima-media thickness in Chinese postmenopausal women. Menopause, 20(11), 1194–1199. https://doi.org/10.1097/GME.0b013e31828aa32d
Tacey, A., Sim, M., Smith, C., Woessner, M. N., Byrnes, E., Lewis, J. R., Brennan-Speranza, T., Hodgson, J. M., Blekkenhorst, L. C., & Levinger, I. (2020). Association between circulating osteocalcin and cardiometabolic risk factors following a 4-week leafy green vitamin K-rich diet. Annals of Nutrition & Metabolism, 76(5), 361–367. https://doi.org/10.1159/000511660
Li, W., Liu, X., Liu, L., Zhang, L., Li, M., Liu, R., Li, T., Chen, E., & Liu, S. (2022). Relationships of serum bone turnover markers with metabolic syndrome components and carotid atherosclerosis in patients with type 2 diabetes mellitus. Frontiers in Cardiovascular Medicine, 9, Article 824561. https://doi.org/10.3389/fcvm.2022.824561
Vaccaro, O., Masulli, M., Nicolucci, A., Bonora, E., Del Prato, S., Maggioni, A. P., Rivellese, A. A., Squatrito, S., Riccardi, G., & TOSCA.IT Study Group. (2017). Effects on the incidence of cardiovascular events of the addition of pioglitazone versus sulfonylureas in patients with type 2 diabetes inadequately controlled with metformin (TOSCA.IT): A randomised, multicentre trial. The Lancet Diabetes & Endocrinology, 5(11), 887–897. https://doi.org/10.1016/S2213-8587(17)30317-0 (Erratum published 2017. The Lancet Diabetes & Endocrinology, 5(11), e7. https://doi.org/10.1016/S2213-8587(17)30333-9)
Jackuliak, P., Kužma, M., & Payer, J. (2019). Effect of antidiabetic treatment on bone. Physiological Research, 68(Suppl. 2), S107–S120. https://doi.org/10.33549/physiolres.934297
Blau, J. E., & Taylor, S. I. (2018). Adverse effects of SGLT2 inhibitors on bone health. Nature Reviews Nephrology, 14(8), 473–474. https://doi.org/10.1038/s41581-018-0028-0
Tacey, A., Hayes, A., Zulli, A., & Levinger, I. (2021). Osteocalcin and vascular function: Is there a cross-talk? Molecular Metabolism, 49, Article 101205. https://doi.org/10.1016/j.molmet.2021.101205
Kim, K. J., Kim, K. M., Park, K. H., Choi, H. S., Jang, H. C., Lim, S., & Lim, S. (2012). Aortic calcification and bone metabolism: The relationship between aortic calcification, BMD, vertebral fracture, 25-hydroxyvitamin D, and osteocalcin. Calcified Tissue International, 91(6), 370–378. https://doi.org/10.1007/s00223-012-9642-1
Ling, Y., Wang, Z., Wu, B., & Gao, X. (2018). Association of bone metabolism markers with coronary atherosclerosis and coronary artery disease in postmenopausal women. Journal of Bone and Mineral Metabolism, 36(3), 352–363. https://doi.org/10.1007/s00774-017-0841-8
Mizokami, A., Mukai, S., Gao, J., Kawakubo-Yasukochi, T., Otani, T., Takeuchi, H., Jimi, E., & Hirata, M. (2020). GLP-1 signaling is required for improvement of glucose tolerance by osteocalcin. Journal of Endocrinology, 244(2), 285–296. https://doi.org/10.1530/JOE-19-0288
Kim, H. J., Choi, S. A., Gu, M. S., Ko, S. Y., Ryu, B. K., Han, K. D., & Lee, S. H. (2024). Effects of glucagon-like peptide-1 receptor agonist on bone mineral density and bone turnover markers: A meta-analysis. Diabetes/Metabolism Research and Reviews, 40(6), Article e3843. https://doi.org/10.1002/dmrr.3843
Kim, H. J., Choi, S. A., Gu, M. S., Ko, S. Y., Ryu, B. K., Han, K. D., & Lee, S. H. (2024). Effects of glucagon-like peptide-1 receptor agonist on bone mineral density and bone turnover markers: A meta-analysis. Diabetes/Metabolism Research and Reviews, 40(6), Article e3843. https://doi.org/10.1002/dmrr.3843
Li, X., Li, Y., & Lei, C. (2024). Effects of glucagon-like peptide-1 receptor agonists on bone metabolism in type 2 diabetes mellitus: A systematic review and meta-analysis. International Journal of Endocrinology, 2024, Article 1785321. https://doi.org/10.1155/2024/1785321
Rao, S. (2022). Use of sodium-glucose cotransporter-2 inhibitors in clinical practice for heart failure prevention and treatment: Beyond type 2 diabetes. A narrative review. Advances in Therapy, 39(2), 845–861. https://doi.org/10.1007/s12325-021-01989-z
Pozzi, A., Cirelli, C., Merlo, A., Saccardi, C., Tinti, E., Kheyr, S. L., Rinaldi, F., Iacovoni, A., Wikström, G., & Cioffi, G. (2024). Adverse effects of sodium-glucose cotransporter-2 inhibitors in patients with heart failure: A systematic review and meta-analysis. Heart Failure Reviews, 29(1), 207–217. https://doi.org/10.1007/s10741-023-10363-w (Erratum published 2024. Heart Failure Reviews, 29(1), 303. https://doi.org/10.1007/s10741-023-10378-3)
Views:
18
Downloads:
15
Copyright (c) 2026 Alla V. Kovalchuk, Olesia V. Zinych, Nataliia M. Kushnareva, Volodymyr M. Kovalchuk, Olha V. Prybyla, Kateryna O. Shyshkan-Shyshova

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

