USING THE SPH METHOD FOR MODELING THE CRYSTALLIZATION PROCESS OF ALUMINUM ALLOYS
Abstract
The purpose of the study was to obtain castings with increased mechanical properties by low-pressure casting using excess pressure on the crystallized casting. The simulation of the process of filling and crystallization of prototypes using the SPH method was carried out. The studies were carried out on a modernized low-pressure injection molding machine model U8261. Prototypes were obtained from AK7ch alloy, special attention is paid to interfacial interaction and intensification of the heat transfer process due to the application of excess pressure. Based on the data obtained, it was found that during crystallization under excessive pressure there is a supercooling effect that reduces the casting solidification time. The use of the SPH method for modeling foundry processes has shown a high level of reliability and requires further development.
References
Борисов Г.П. Повышение качества отливок из алюминиевых сплавов. Оборудование и инструмент для профессионалов. 2006. 1(73): 21-28.
Безпалько В.И. Литье с кристаллизацией под давлением тонкостенных отливок из силуминов. Литейное производство. 2013. 6: 21-22.
Фасевич Ю.Н., Рудницкий Ф.И. Разработка методики экспериментальных исследований управления кристаллизацией литых заготовок путем оптимизации теплофизических свойств элементов литниковой системы. Литье и металлургия. 2018. 3:36-42.
Чуркин Б.С., Чуркин А.Б., Гофман Э.Б., Категоренко Ю.И. Оптимальное управление заливкой форм при литье под регулируемым давлением. Литье и металлургия. 2002. 2: 71-75.
Khan M.A., Sheikh A.K. A comparative study of simulation software for modelling metalcasting processes. International Journal of Simulation Modelling. 2018. 17(2): 197-209.
Monaghan J. J. Simulating free surface flows with SPH. Journal of Computational Physics. 1994. 110(2): 399–406.
Monaghan J. J. Smoothed particle hydrodynamics. Reports on Progress in Physics. 2005. 68: 1703–1759.
Paul W. Cleary Extension of SPH to predict feeding, freezing and defect creation in low pressure die casting. Applied Mathematical Modelling. 2010. 34: 3189-3201.
Wen-jiong Cao, Zhao-yao Zhou, Fang-ming Jiang Smoothed particle hydrodynamics modeling and simulation of foundry filling process. Transactions of Nonferrous Metals Society of China. 2015. 25: 2321-2330.
Amirsaman Farrokhpanah, Markus Bussmann, Javad Mostaghimi New smoothed particle hydrodynamics (SPH) formulation for modeling heat conduction with solidification and melting. Numerical Heat Transfer, Part B: Fundamentals. 2017. 71(4): 299-312.
Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574.
Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–406.
Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68(8):1703–1759.
Cleary PW, Prakash M, Ha J, Stokes N, Scott C (2007) Smooth particle hydrodynamics: status and future potential. Prog Comput Fluid Dyn 7:70–90.
Views:
274
Downloads:
250
Copyright (c) 2020 The authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.