BEARING CAPACITY OF HINGELESS CIRCULAR ARCHES MADE OF CONCRETE AND FIBER CONCRETE UNDER HYDROSTATIC PRESSURE

Keywords: Concrete, Hingeless Arch, Hydrostatic Pressure, Bearing Capacity, Numerical Analysis, Experiment

Abstract

The authors presented a numerical and experimental study of the bearing capacity of circular concrete and fiber concrete arches The authors made a stand to determine the bearing capacity of arches models under hydrostatic pressure. The hingeless arches were made of C16/20 concrete; one arch was made of unreinforced concrete, and the second arch had 1% steel anchor fiber added to the mix. ANSYS software was used for computer modeling and numerical analysis by the finite element method. When testing the concrete arch, the breaking load was 710 kN, and when testing the fiber concrete arch, it was 810 kN, that is, the bearing capacity of the fiber concrete arch determined experimentally was 1.13 times higher. The results of experimental and numerical investigations agree well with each other and with the results of theoretical calculations. Comparison of normal stresses in the experiment determined at strain gauge points with their theoretical values gives a maximum discrepancy of 9.6 % for the concrete arch and 9.2 % for the fiber concrete one. It is recommended to increase the load-bearing capacity of the structure by means of a more uniform dispersed reinforcement of the arch.

References

Smirnov A.F. Stroitelnaya mehanika. Sterzhnevyie sistemyi / A.F. Smirnov, A.V. Aleksandrov, B.Ya. Laschenikov, N.N. Shaposhnikov. M.: Stroyizdat, 1981. 512 p.

Shaposhnikov N.N., Kristalinskiy R.H., Darkov A.V. Stroitelnaya mehanika / 13-e izdanie, pererabotannoe i dopolnennoe. SPb.: Lan, 2017. 692 p.

Borisevich, A.A. Stroitelnaya mehanika: uchebnoe posobie dlya stroitelnyih spetsialnostey vuzov / A.A. Borisevich, E.M. Sidorovich, V.I. Ignatyuk; Belorusskiy natsionalnyiy tehnicheskiy universitet. Izd. 2-e, pererab. Minsk: BNTU, 2009. 756 p.

Surianinov M.H. / Stroytelnaia mekhanyka ploskykh i prostranstvennikh system / Odessa. Astroprynt, 2012. 408 p.

A.S. Horodetskyi, M.S. Barabash, V.N. Sydorov. Kompiuternoe modelyrovanye v zadachakh stroytelnoi mekhanyky. Yzd-vo ASV. 338 p.

Barbashev N.P. Raschet zhelezobetonnoi arky v hrunte na deistvye dynamycheskoi nahruzky / N.P. Barbashev. Vestnyk MTSU. Vol. 3. 2016. 34-43.

Nemyrovskyi Yu.V. Ratsyonalnoe proektyrovanye betonnoi polukruhovoi arky. Yu.V. Nemyrovskyi, D.V. Mokhovnёv, K.A. Soloveva // Novosybyrsk, 2018. Novosybyrsk: Yzd-vo NHTU. T. 1. 79–83.

Antsyperovskyi D.V. Ratsyonalnoe proektyrovanye zhelezobetonnыkh arok / D.V. Antsyperovskyi, D.A. Zhdanov, S.A. Luzghyn, D.Y. Yhnatushyn, A.A. Skurykhyna // Tekhnadzor. Vol. 12 (109). Ekaterynburh, 2015. 176-177.

Harvey Jr., P.S., Virgin, L.N., 2015. Coexisting equilibria and stability boundaries of a shallow arch: unilateral displacement-control experiments and theory. Int. J. Solids Struct. 54, 1–11.

G.M. El-Mahdy. Parametric study of the structural and in-plane buckling analysis of ogee arches. HBRC Journal (2014) 10, 108–116.

Jun Yang, Jianting Zhou, Zongshan Wang, Yingxin Zhou and Hong Zhang. Structural Behavior of Ultrahigh-Performance Fiber-Reinforced Concrete Thin-Walled Arch Subjected to Asymmetric Load. Hindawi Advances in Civil Engineering Volume 2019, Article ID 9276839, pages 1-12. https://doi.org/10.1155/2019/9276839.

H. Moradia, A.R. Khaloob, M. Shekarchib, and A. Kazemianb. Efect of utilizing glass ber-reinforced polymer on exural strengthening of RC arches/Scientia Iranica, Transactions A: Civil Engineering 26 (2019) 2299-2309.

Zhang, X., Wang, P., Jiang, M., Fan, H., Zhou, J., Li, W., Jin, F. (2015). CFRP strengthening reinforced concrete arches: Strengthening methods and experimental studies. Composite Structures, 131, 852–867. doi:10.1016/j.compstruct.2015.06

Hamed, E., Chang, Z.-T., & Rabinovitch, O. (2015). Strengthening of Reinforced Concrete Arches with Externally Bonded Composite Materials: Testing and Analysis. Journal of Composites for Construction, 19(1), 04014031. doi:10.1061/(asce)cc.1943-5614.0000495

Yang, J., Zhou, J., Wang, Z., Zhou, Y., & Zhang, H. (2019). Structural Behavior of Ultrahigh-Performance Fiber-Reinforced Concrete Thin-Walled Arch Subjected to Asymmetric Load. Advances in Civil Engineering, 2019, 1–12. doi:10.1155/2019/9276839

Moradi, H., Khaloo, A., Shekarchi, M., Kazemian, A. (2019). Effect of utilizing glass fiber-reinforced polymer on flexural strengthening of RC arches. Scientia Iranica, 26(Issue 4: Special Issue Dedicated to Professor Abolhassan Vafai), 2299-2309. doi: 10.24200/sci.2019.21512

DSTU B.V.2.7-214:2009. Betony. Metody vyznachennia mitsnosti za kontrolnymy zrazkamy. K.: Minrehionbud Ukrainy, 2010. 43 p. (Natsionalnyi standart Ukrainy).

Patent na korysnu model №147543 Stend dlia vyznachennia nesuchoi zdatnosti arochnykh konstruktsii / Nieutov S.P., Korneieva I.B., Surianinov M.H., Boiko O.V., Holovata Z.O. 19.05.21. https://sis.ukrpatent.org/uk/search/detail/1594405/

Lazareva. D. V., Soroka. M. M., Shilyaev. O. S. Priyomi roboti z PK ANSYS pri rozv’yazanni zadach mekhaniki. Pіd redaktsityu M.G. Surianinova: monografiya. Odesa: ODABA. 2020.

Surianinov N.H. Praktykum po stroytelnoi mekhanyke ploskykh y prostranstvennikh system: uchebnoe posobye dlia studentov tekhnycheskykh spetsyalnostei / Odessa. Astroprynt, 2014. 232 p.

Views:

98

Downloads:

66

Published
2022-12-30
Citations
How to Cite
Surianinov M. H., Neutov S. F., Soroka M. M., Kirichenko D. O., & Chuchmai O. M. (2022). BEARING CAPACITY OF HINGELESS CIRCULAR ARCHES MADE OF CONCRETE AND FIBER CONCRETE UNDER HYDROSTATIC PRESSURE. World Science, (6(78). https://doi.org/10.31435/rsglobal_ws/30122022/7904
Section
Architecture and Construction