ARTIFICIAL INTELLIGENCE IN ULTRASONOGRAPHIC DIAGNOSIS OF THYROID NODULES: ENHANCING RISK STRATIFICATION AND CLINICAL DECISON-MAKING

Keywords: Thyroid Nodules, High-Resolution Ultrasonography, Artificial Intelligence, Machine Learning, Deep Learning, TI-RADS, EU-TIRADS, Diagnostic Standardization, Fine-Needle Aspiration, Elastography, Thyroid Malignancy

Abstract

Thyroid nodules are common clinical findings, increasingly detected due to the widespread use of high-resolution ultrasound imaging. While the majority of these nodules are benign, a minority may be malignant, necessitating accurate and efficient risk stratification. Traditional ultrasonographic evaluation relies heavily on the operator’s expertise and subjective interpretation, which introduces diagnostic variability.

This narrative review explores the evolving role of artificial intelligence in the ultrasonographic diagnosis of thyroid nodules. The principal objective of this review is to critically evaluate the diagnostic performance, clinical utility, and integration potential of artificial intelligence (AI)-based methodologies—including machine learning (ML) and deep learning (DL)—in the ultrasonographic assessment of thyroid nodules. Particular attention is devoted to the enhancement of existing risk stratification frameworks, and to identifying barriers to implementation in routine clinical. The review evaluates AI-integrated diagnostic systems in relation to existing classification frameworks, such as the thyroid imaging reporting and data system, and highlights innovations in elastography, 3D imaging, and automated segmentation. Evidence suggests that AI can enhance diagnostic accuracy, reduce interobserver variability, and improve the standardization of thyroid nodule assessment. Some algorithms demonstrate performance comparable to that of experienced clinicians, particularly in differentiating benign from suspicious nodules.

Despite promising results, limitations such as model generalizability, the need for large annotated datasets, and clinical validation remain challenges. The findings support the integration of artificial intelligence as a complementary tool to assist healthcare professionals in making more objective, consistent, and timely decisions regarding the evaluation and management of thyroid nodules

Methodology: A comprehensive narrative review of peer-reviewed literature was undertaken, encompassing both classical and AI-augmented ultrasonographic techniques, with a specific focus on diagnostic criteria, algorithmic accuracy, and classification consistency across TI-RADS variants (ACR-TIRADS, EU-TIRADS, K-TIRADS). Additionally, the role of emerging modalities such as ultrasound elastography was examined in the context of evaluating cytologically indeterminate nodules. Literature published between 2009 and 2025 was examined to assess how machine learning and deep learning algorithms contribute to image interpretation, classification, and malignancy prediction.

Abbreviated Description of The State Of Knowledge: Thyroid nodules are detected in up to 60% of the general adult population via ultrasonography. Although the malignancy rate remains relatively low (~5%), the clinical imperative is the accurate differentiation of malignant from benign lesions. Risk stratification relies on the assessment of sonographic features, including echogenicity, shape, margins, calcifications, and vascularity. Several standardized scoring systems—most notably TI-RADS—are employed to systematize malignancy risk and guide indications for fine-needle aspiration biopsy (FNAB). Despite its utility, ultrasonography remains inherently operator-dependent and subject to interpretive variability. AI-powered diagnostic systems have demonstrated promising potential in mitigating interobserver discrepancies, augmenting risk classification fidelity, and improving diagnostic throughput. Adjunctive techniques such as elastography provide additional biomechanical data, although limitations in methodological standardization currently preclude widespread adoption.

References

Rago, T., & Vitti, P. (2022). Risk Stratification of Thyroid Nodules: From Ultrasound Features to TIRADS. Cancers, 14(3), 717. https://doi.org/10.3390/cancers14030717

Grani, G., Sponziello, M., Pecce, V., Ramundo, V., & Durante, C. (2020). Contemporary Thyroid Nodule Evaluation and Management. The Journal of clinical endocrinology and metabolism, 105(9), 2869–2883. https://doi.org/10.1210/clinem/dgaa322

Bernet, V. J., & Chindris, A. M. (2021). Update on the Evaluation of Thyroid Nodules. Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 62(Suppl 2), 13S–19S. https://doi.org/10.2967/jnumed.120.246025

Alyami, J., Almutairi, F. F., Aldoassary, S., Albeshry, A., Almontashri, A., Abounassif, M., & Alamri, M. (2022). Interobserver variability in ultrasound assessment of thyroid nodules. Medicine, 101(41), e31106. https://doi.org/10.1097/MD.0000000000031106

Moraes, P. H. M., Sigrist, R., Takahashi, M. S., Schelini, M., & Chammas, M. C. (2019). Ultrasound elastography in the evaluation of thyroid nodules: evolution of a promising diagnostic tool for predicting the risk of malignancy. Radiologia brasileira, 52(4), 247–253. https://doi.org/10.1590/0100-3984.2018.0084

Tobcu, E., Karavaş, E., Yılmaz, G. T., & Topçu, B. (2025). Comparison of K-TIRADS, EU-TIRADS and ACR-TIRADS Guidelines for Malignancy Risk Determination of Thyroid Nodules. Diagnostics (Basel, Switzerland), 15(8), 1015. https://doi.org/10.3390/diagnostics15081015

Kant, R., Davis, A., & Verma, V. (2020). Thyroid Nodules: Advances in Evaluation and Management. American family physician, 102(5), 298–304.

Hamill, C., Ellis, P., & Johnston, P. C. (2022). Ultrasound for the assessment of thyroid nodules: an overview for non-radiologists. British journal of hospital medicine (London, England : 2005), 83(7), 1–7. https://doi.org/10.12968/hmed.2022.0071

Uppal, N., Collins, R., & James, B. (2023). Thyroid nodules: Global, economic, and personal burdens. Frontiers in endocrinology, 14, 1113977.https://doi.org/10.3389/fendo.2023.1113977

Haugen, B. R., Alexander, E. K., Bible, K. C., Doherty, G. M., Mandel, S. J., Nikiforov, Y. E., Pacini, F., Randolph, G. W., Sawka, A. M., Schlumberger, M., Schuff, K. G., Sherman, S. I., Sosa, J. A., Steward, D. L., Tuttle, R. M., & Wartofsky, L. (2016). 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid : official journal of the American Thyroid Association, 26(1), 1–133. https://doi.org/10.1089/thy.2015.0020

Burgos, N., Ospina, N. S., & Sipos, J. A. (2022). The Future of Thyroid Nodule Risk Stratification. Endocrinology and metabolism clinics of North America, 51(2), 305–321. https://doi.org/10.1016/j.ecl.2021.12.002

Piticchio, T., Russ, G., Radzina, M., Frasca, F., Durante, C., & Trimboli, P. (2024). Head-to-head comparison of American, European, and Asian TIRADSs in thyroid nodule assessment: systematic review and meta-analysis. European thyroid journal, 13(2), e230242. https://doi.org/10.1530/ETJ-23-0242

Harbuwono, D. S., Soewondo, P., Yunir, E., Soebardi, S., Darmowidjojo, B., Purnamasari, D., Tarigan, T. J. E., Wisnu, W., Tahapary, D. L., Kurniawan, F., Yulian, E. D., Lisnawati, L., Stephanie, A., Makes, B., Zulkarnaien, B., Suroyo, I., Siswoyo, A. D., Gondhowiardjo, S., Kodrat, H., Hermani, B., … Subekti, I. (2019). Diagnostic Approach for Thyroid Nodules. Acta medica Indonesiana, 51(2), 189–193.

Shin, J. H., Baek, J. H., Chung, J., Ha, E. J., Kim, J. H., Lee, Y. H., Lim, H. K., Moon, W. J., Na, D. G., Park, J. S., Choi, Y. J., Hahn, S. Y., Jeon, S. J., Jung, S. L., Kim, D. W., Kim, E. K., Kwak, J. Y., Lee, C. Y., Lee, H. J., Lee, J. H., … Korean Society of Thyroid Radiology (KSThR) and Korean Society of Radiology (2016). Ultrasonography Diagnosis and Imaging-Based Management of Thyroid Nodules: Revised Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean journal of radiology, 17(3), 370–395. https://doi.org/10.3348/kjr.2016.17.3.370

Horvath, E., Majlis, S., Rossi, R., Franco, C., Niedmann, J. P., Castro, A., & Dominguez, M. (2009). An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. The Journal of clinical endocrinology and metabolism, 94(5), 1748–1751. https://doi.org/10.1210/jc.2008-1724

Durante, C., Hegedüs, L., Czarniecka, A., Paschke, R., Russ, G., Schmitt, F., Soares, P., Solymosi, T., & Papini, E. (2023). 2023 European Thyroid Association Clinical Practice Guidelines for thyroid nodule management. European thyroid journal, 12(5), e230067. https://doi.org/10.1530/ETJ-23-0067

Ti-rads calculator – calculates ti-rads score. https://tiradscalculator.com/

Bukasa-Kakamba, J., Bayauli, P., Sabbah, N., Bidingija, J., Atoot, A., Mbunga, B., Nkodila, A., Atoot, A., Bangolo, A. I., & M'Buyamba-Kabangu, J. R. (2022). Ultrasound performance using the EU-TIRADS score in the diagnosis of thyroid cancer in Congolese hospitals. Scientific reports, 12(1), 18442. https://doi.org/10.1038/s41598-022-22954-y

Jin, Z., Pei, S., Shen, H., Ouyang, L., Zhang, L., Mo, X., Chen, Q., You, J., Zhang, S., & Zhang, B. (2023). Comparative Study of C-TIRADS, ACR-TIRADS, and EU-TIRADS for Diagnosis and Management of Thyroid Nodules. Academic radiology, 30(10), 2181–2191. https://doi.org/10.1016/j.acra.2023.04.013

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A. W. M., van Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical image analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005

Prevedello, L. M., Halabi, S. S., Shih, G., Wu, C. C., Kohli, M. D., Chokshi, F. H., Erickson, B. J., Kalpathy-Cramer, J., Andriole, K. P., & Flanders, A. E. (2019). Challenges Related to Artificial Intelligence Research in Medical Imaging and the Importance of Image Analysis Competitions. Radiology. Artificial intelligence, 1(1), e180031. https://doi.org/10.1148/ryai.2019180031

Hu, M., Zhang, J., Matkovic, L., Liu, T., & Yang, X. (2023). Reinforcement learning in medical image analysis: Concepts, applications, challenges, and future directions. Journal of applied clinical medical physics, 24(2), e13898. https://doi.org/10.1002/acm2.13898

Liu, X., Faes, L., Kale, A. U., Wagner, S. K., Fu, D. J., Bruynseels, A., Mahendiran, T., Moraes, G., Shamdas, M., Kern, C., Ledsam, J. R., Schmid, M. K., Balaskas, K., Topol, E. J., Bachmann, L. M., Keane, P. A., & Denniston, A. K. (2019). A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. The Lancet. Digital health, 1(6), e271–e297. https://doi.org/10.1016/S2589-7500(19)30123-2

Koçak, B., Ponsiglione, A., Stanzione, A., Bluethgen, C., Santinha, J., Ugga, L., Huisman, M., Klontzas, M. E., Cannella, R., & Cuocolo, R. (2025). Bias in artificial intelligence for medical imaging: fundamentals, detection, avoidance, mitigation, challenges, ethics, and prospects. Diagnostic and interventional radiology (Ankara, Turkey), 31(2), 75–88. https://doi.org/10.4274/dir.2024.242854

Avanzo, M., Stancanello, J., Pirrone, G., Drigo, A., & Retico, A. (2024). The Evolution of Artificial Intelligence in Medical Imaging: From Computer Science to Machine and Deep Learning. Cancers, 16(21), 3702. https://doi.org/10.3390/cancers16213702

Xu, Y., Xu, M., Geng, Z., Liu, J., & Meng, B. (2025). Thyroid nodule classification in ultrasound imaging using deep transfer learning. BMC cancer, 25(1), 544. https://doi.org/10.1186/s12885-025-13917-3

Zhou, Y., Chen, C., Yao, J., Yu, J., Feng, B., Sui, L., Yan, Y., Chen, X., Liu, Y., Zhang, X., Wang, H., Pan, Q., Zou, W., Zhang, Q., Lin, L., Xu, C., Yuan, S., He, Q., Ding, X., Liang, P., … Xu, D. (2025). A deep learning based ultrasound diagnostic tool driven by 3D visualization of thyroid nodules. NPJ digital medicine, 8(1), 126. https://doi.org/10.1038/s41746-025-01455-y

Barzegar Golmoghani, Erfan & Mohebi, Mobin & Gohari, Zahra & Aram, Sadaf & Mohammadzadeh, Ali & Firouznia, Sina & Shakiba, Madjid & Naghibi, Hamed & Moradian, Sadegh & Ahmadi, Maryam & Almasi, Kazhal & Issaiy, Mahbod & Anjomrooz, Mehran & Tavangar, Seyed Mohammad & Javadi, Sheida & Bitarafan Rajabi, Ahmad & Davoodi, Mohammad & Sharifian, Hashem & Mohammadzadeh, Maryam. (2025). ELTIRADS framework for thyroid nodule classification integrating elastography, TIRADS, and radiomics with interpretable machine learning. Scientific Reports. 15. 10.1038/s41598-025-93226-8.

Fernández Alba, J. J., Carral, F., Ayala Ortega, C., Santotoribio, J. D., Lara, M. C., & González Macías, C. (2025). External Validation of a Predictive Model for Thyroid Cancer Risk with Decision Curve Analysis. Diagnostics (Basel, Switzerland), 15(6), 686. https://doi.org/10.3390/diagnostics15060686

Yang, L., Wang, X., Zhang, S., Cao, K., & Yang, J. (2025). Research progress on artificial intelligence technology-assisted diagnosis of thyroid diseases. Frontiers in oncology, 15, 1536039. https://doi.org/10.3389/fonc.2025.1536039

Watkins, L., O'Neill, G., Young, D., & McArthur, C. (2021). Comparison of British Thyroid Association, American College of Radiology TIRADS and Artificial Intelligence TIRADS with histological correlation: diagnostic performance for predicting thyroid malignancy and unnecessary fine needle aspiration rate. The British journal of radiology, 94(1123), 20201444. https://doi.org/10.1259/bjr.20201444

Namsena, P., Songsaeng, D., Keatmanee, C., Klabwong, S., Kunapinun, A., Soodchuen, S., Tarathipayakul, T., Tanasoontrarat, W., Ekpanyapong, M., & Dailey, M. N. (2024). Diagnostic performance of artificial intelligence in interpreting thyroid nodules on ultrasound images: a multicenter retrospective study. Quantitative imaging in medicine and surgery, 14(5), 3676–3694. https://doi.org/10.21037/qims-23-1650

Liu, Y., Feng, Y., Qian, L., Wang, Z., & Hu, X. (2023). Deep learning diagnostic performance and visual insights in differentiating benign and malignant thyroid nodules on ultrasound images. Experimental biology and medicine (Maywood, N.J.), 248(24), 2538–2546. https://doi.org/10.1177/15353702231220664

Published
2026-02-02
Citations
How to Cite
Michał Kociński, Filip Matusiak, Klaudia Brzoza, Patryk Iglewski, Michał Pietrasz, & Anna Komarczewska. (2026). ARTIFICIAL INTELLIGENCE IN ULTRASONOGRAPHIC DIAGNOSIS OF THYROID NODULES: ENHANCING RISK STRATIFICATION AND CLINICAL DECISON-MAKING. International Journal of Innovative Technologies in Social Science, (1(49). https://doi.org/10.31435/ijitss.1(49).2026.4860