TIRZEPATIDE AND RETATRUTIDE IN THE TREATMENT OF OBESITY AND TYPE 2 DIABETES MELLITUS: CURRENT EVIDENCE AND FUTURE DIRECTIONS. A SYSTEMATIC REVIEW OF CURRENT LITERATURE
Abstract
Background: The global prevalence of obesity and type 2 diabetes mellitus (T2DM) has achieved unprecedented levels, imposing substantial burdens on healthcare systems worldwide. Incretin-based pharmacotherapies have fundamentally transformed therapeutic approaches to these metabolic disorders over the past decade. Tirzepatide is a dual GIP/GLP-1 receptor agonist. Retatrutide additionally targets glucagon receptors. Both agents represent groundbreaking advances in metabolic pharmacotherapy.
Objective: This comprehensive review synthesizes clinical evidence from trials conducted between 2014 and 2024, examining pharmacological mechanisms, therapeutic efficacy, safety characteristics, and prospective clinical applications of these novel multi-receptor agonists.
Methods: We performed systematic literature searches across PubMed, Cochrane Library, Web of Science, and ClinicalTrials.gov databases. Selection criteria encompassed randomized controlled trials, systematic reviews, meta-analyses, and prospective cohort studies, adhering to PRISMA methodology throughout.
Results: Phase 3 clinical trials showed superior efficacy of tirzepatide compared to existing pharmacotherapies, reaching body weight reductions of approximately 22.5% and hemoglobin A1c (HbA1c) reductions of up to 2.4 percentage points. Phase 2 trials of retatrutide revealed even more remarkable outcomes, with weight reductions approaching 24.2% over 48 weeks. Both medications exhibited favorable cardiovascular profiles, though gastrointestinal adverse events constitute the predominant tolerability concern.
Conclusions: These pharmacological agents represent paradigm-shifting developments in obesity and diabetes management. Their therapeutic effectiveness approximates outcomes previously achievable only through surgical intervention, marking a transformative milestone for pharmacotherapy. Ongoing phase 3 trials will further elucidate their optimal positioning within clinical treatment algorithms.
References
World Health Organization. (2023). Obesity and overweight: Fact sheet. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
Blüher, M. (2019). Obesity: Global epidemiology and pathogenesis. Nature Reviews Endocrinology, 15(5), 288-298.
Ward, Z. J., et al. (2021). Association of body mass index with health care expenditures. PLoS ONE, 16(3), e0247307.
International Diabetes Federation. (2021). IDF Diabetes Atlas (10th ed.).
DeFronzo, R. A. (2009). From the triumvirate to the ominous octet. Diabetes, 58(4), 773-795.
American Diabetes Association. (2024). Standards of Care in Diabetes—2024. Diabetes Care, 47(Suppl 1), S1-S321.
Yanovski, S. Z., & Yanovski, J. A. (2024). Approach to obesity treatment in primary care. JAMA Internal Medicine, 184(7), 818-829.
Mingrone, G., et al. (2021). Metabolic surgery versus conventional medical therapy: 10-year follow-up. The Lancet, 397(10271), 293-304.
Drucker, D. J. (2018). Mechanisms of action and therapeutic application of GLP-1. Cell Metabolism, 27(4), 740-756.
Sattar, N., et al. (2021). Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists. The Lancet Diabetes & Endocrinology, 9(10), 653-662.
Coskun, T., et al. (2018). LY3298176, a novel dual GIP and GLP-1 receptor agonist. Molecular Metabolism, 18, 3-14.
Frias, J. P., et al. (2018). Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist. The Lancet, 392(10160), 2180-2193.
Coskun, T., et al. (2022). LY3437943, a novel triple glucagon, GIP, and GLP-1 receptor agonist. Cell Metabolism, 34(9), 1234-1247.
Conceição-Furber, E., et al. (2022). Is glucagon receptor activation the thermogenic solution for treating obesity? Frontiers in Endocrinology, 13, 868037.
Jastreboff, A. M., et al. (2023). Triple-hormone-receptor agonist retatrutide for obesity. New England Journal of Medicine, 389(6), 514-526.
Page, M. J., et al. (2021). The PRISMA 2020 statement. BMJ, 372, n71.
Sterne, J. A. C., et al. (2019). RoB 2: A revised tool for assessing risk of bias. BMJ, 366, l4898.
Shea, B. J., et al. (2017). AMSTAR 2: A critical appraisal tool for systematic reviews. BMJ, 358, j4008.
Nauck, M. A., & Meier, J. J. (2018). Incretin hormones: Their role in health and disease. Diabetes, Obesity and Metabolism, 20(S1), 5-21.
Baggio, L. L., & Drucker, D. J. (2007). Biology of incretins: GLP-1 and GIP. Gastroenterology, 132(6), 2131-2157.
Seino, Y., et al. (2010). GIP and GLP-1, the two incretin hormones. Journal of Diabetes Investigation, 1(1-2), 8-23.
Campbell, J. E., & Drucker, D. J. (2013). Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metabolism, 17(6), 819-837.
Nauck, M. A., & Müller, T. D. (2023). Incretin hormones and type 2 diabetes. Diabetologia, 66(10), 1780-1795.
Adriaenssens, A. E., et al. (2019). Glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus regulate food intake. Cell Metabolism, 30(5), 987-996.
Willard, F. S., et al. (2020). Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI Insight, 5(17), e140532.
Thomas, M. K., et al. (2021). Dual GIP and GLP-1 receptor agonist tirzepatide improves beta-cell function. Journal of Clinical Endocrinology & Metabolism, 106(2), 388-396.
Samms, R. J., et al. (2020). How may GIP enhance the therapeutic efficacy of GLP-1? Trends in Endocrinology & Metabolism, 31(6), 410-421.
Finan, B., et al. (2016). Reappraisal of GIP pharmacology for metabolic diseases. Trends in Molecular Medicine, 22(5), 359-376.
Nauck, M. A., et al. (2021). The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease. Diabetes, Obesity and Metabolism, 23(S3), 5-29.
Urva, S., et al. (2022). LY3437943, a novel triple GIP, GLP-1, and glucagon receptor agonist: Phase 1b trial. The Lancet, 400(10366), 1869-1881.
Finan, B., et al. (2015). A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nature Medicine, 21(1), 27-36.
Habegger, K. M., et al. (2010). The metabolic actions of glucagon revisited. Nature Reviews Endocrinology, 6(12), 689-697.
Hope, D. C. D., & Tan, T. M. (2023). Glucagon and energy expenditure; Revisiting amino acid metabolism. Peptides, 162, 170962.
Samms, R. J., et al. (2021). GIPR agonism mediates weight-independent insulin sensitization by tirzepatide. Journal of Clinical Investigation, 131(12), e146353.
Li, W., et al. (2024). Structural insights into the triple agonism at GLP-1R, GIPR and GCGR manifested by retatrutide. Cell Discovery, 10, 77.
Sinha, R., et al. (2023). Efficacy and safety of tirzepatide in type 2 diabetes and obesity management. Journal of Obesity and Metabolic Syndrome, 32(1), 25-45.
Rosenstock, J., et al. (2021). Efficacy and safety of tirzepatide (SURPASS-1). The Lancet, 398(10295), 143-155.
Frías, J. P., et al. (2021). Tirzepatide versus semaglutide once weekly. New England Journal of Medicine, 385(6), 503-515.
Ludvik, B., et al. (2021). Once-weekly tirzepatide versus once-daily insulin degludec (SURPASS-3). The Lancet, 398(10300), 583-598.
Del Prato, S., et al. (2021). Tirzepatide versus insulin glargine (SURPASS-4). The Lancet, 398(10313), 1811-1824.
Dahl, D., et al. (2022). Effect of subcutaneous tirzepatide vs placebo (SURPASS-5). JAMA, 327(6), 534-545.
Rosenstock, J., et al. (2023). Retatrutide, a GIP, GLP-1 and glucagon receptor agonist, for people with type 2 diabetes. The Lancet, 402(10401), 529-544.
Hamza, N., et al. (2025). Tirzepatide for overweight and obesity management. Expert Opinion on Pharmacotherapy, 26(1), 31-49.
Jastreboff, A. M., et al. (2022). Tirzepatide once weekly for the treatment of obesity. New England Journal of Medicine, 387(3), 205-216.
Garvey, W. T., et al. (2023). Tirzepatide once weekly for the treatment of obesity in people with type 2 diabetes (SURMOUNT-2). The Lancet, 402(10402), 613-626.
Aronne, L. J., et al. (2025). Tirzepatide as compared with semaglutide for the treatment of obesity. New England Journal of Medicine, 393(1), 26-36.
Packer, M., et al. (2025). Tirzepatide for heart failure with preserved ejection fraction and obesity. New England Journal of Medicine, 392(5), 427-437.
Kramer, C. M., et al. (2025). Tirzepatide reduces LV mass and paracardiac adipose tissue: SUMMIT CMR substudy. Journal of the American College of Cardiology, 85(7), 699-706.
Nicholls, S. J., et al. (2024). Comparison of tirzepatide and dulaglutide on major adverse cardiovascular events: SURPASS-CVOT design. American Heart Journal, 267, 1-11.
Rinella, M. E., et al. (2023). A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology, 78(6), 1966-1986.
Loomba, R., et al. (2024). Tirzepatide for metabolic dysfunction-associated steatohepatitis with liver fibrosis. New England Journal of Medicine, 391(4), 299-310.
Sanyal, A. J., et al. (2024). Triple hormone receptor agonist retatrutide for metabolic dysfunction-associated steatotic liver disease. Nature Medicine, 30, 2037-2048.
Malhotra, A., et al. (2024). Tirzepatide for the treatment of obstructive sleep apnea and obesity. New England Journal of Medicine, 391(13), 1193-1205.
Mishra, R., et al. (2023). Adverse events related to tirzepatide. Journal of the Endocrine Society, 7(4), bvad016.
Karrar, H. R., et al. (2023). Tirzepatide-induced gastrointestinal manifestations: A systematic review and meta-analysis. Cureus, 15(9), e46091.
Tong, K., et al. (2023). Gastrointestinal adverse events of tirzepatide in type 2 diabetes: A meta-analysis. Medicine, 102(41), e35488.
Holst, J. J., & Rosenkilde, M. M. (2020). GIP as a therapeutic target in diabetes and obesity. Journal of Clinical Endocrinology & Metabolism, 105(8), e2710-e2716.
Borlaug, B. A., et al. (2025). Effects of tirzepatide on circulatory overload and end-organ damage in heart failure: Secondary analysis of the SUMMIT trial. Nature Medicine, 31(2), 544-551.
Copyright (c) 2026 Rafał Bednarczyk, Natalia Bednarczyk, Radosław Krzysztof Binkowski, Agnieszka Kurek, Natalia Krajewska, Aleksandra Lejman, Aleksandra Mazurkiewicz, Hubert Sidor, Monika Wołosik, Szymon Zysiak

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

