MOBILE HEALTH APPLICATIONS IN MANAGEMENT OF POLYCYSTIC OVARY SYNDROME (PCOS): A SYSTEMATIC REVIEW OF CLINICAL EFFICACY, QUALITY, AND SOCIO-ECONOMIC IMPLICATIONS

Keywords: Polycystic Ovary Syndrome (PCOS), mHealth, Digital Therapeutics, Health Economics, Artificial Intelligence

Abstract

Background: Polycystic Ovary Syndrome (PCOS) constitutes the most prevalent endocrine disorder in reproductive-aged women, affecting approximately 8–13% of this population globally. Although lifestyle modification is the designated first-line therapy, adherence is frequently impeded by economic barriers and the lack of continuous, personalized support. Mobile health (mHealth) technologies propose a scalable solution to this "care gap," yet the digital marketplace remains fragmented, often lacking alignment between commercial usability and clinical evidence.

Objectives: This systematic review evaluates the clinical efficacy, technical quality, and socio-economic implications of mHealth interventions in PCOS management to inform future clinical practice and reimbursement frameworks.

Methods: A systematic search of academic databases covering the period from January 2010 to January 2025 yielded 34 eligible studies. These included Randomized Controlled Trials (RCTs) assessing clinical outcomes and content analyses utilizing the Mobile App Rating Scale (MARS).

Results: Evidence from high-quality RCTs indicates that integrated mHealth interventions can function as effective "digital scaffolds" for behavioral change. Specific digital interventions demonstrated significant weight reduction (mean -3.19 kg) and improved insulin resistance with efficacy comparable to metformin. Furthermore, digital support significantly restored reproductive function, with long-term data showing a substantial increase in the prevalence of regular menstrual cycles, rising from 3.3% at baseline to 43.1% in intervention groups. However, technical analyses reveal a persistent "quality gap," where commercial applications prioritize aesthetics over evidence-based medical content.

Conclusion: Mobile health applications represent a clinically valid and cost-effective adjunct to standard PCOS care. To realize their public health potential, future frameworks must bridge the divide between commercial user experience and academic rigor, ensuring equitable access to validated digital therapeutics.

References

Arabkermani, Z., Barzegari, S., Rouhani, A., Nahavandi, N., Gibreel, O., & Arpaci, I. (2025). Mobile apps designed for patients with polycystic ovary syndrome: Content analysis using the Mobile App Rating Scale. Journal of Medical Internet Research, 27, Article e71118. https://doi.org/10.2196/71118

Baumel, A., Muench, F., Edan, S., & Kane, J. M. (2019). Objective user engagement with mental health apps: Systematic search and panel-based usage analysis. Journal of Medical Internet Research, 21(9), Article e14567. https://doi.org/10.2196/14567

Boyle, J. A., Xu, R., & Teede, H. (2019). AskPCOS: Identifying need to inform evidence-based app development for polycystic ovary syndrome. Seminars in Reproductive Medicine, 36(1), 59–65. https://doi.org/10.1055/s-0038-1667187

Bozdag, G., Mumusoglu, S., Zengin, D., Karabulut, E., & Yildiz, B. O. (2016). The prevalence and phenotypic features of polycystic ovary syndrome: A systematic review and meta-analysis. Human Reproduction, 31(12), 2841–2855. https://doi.org/10.1093/humrep/dew218

Brutocao, C., Zaiem, F., Alsawas, M., Morrow, A. S., Murad, M. H., & Javed, A. (2018). Psychiatric disorders in women with polycystic ovary syndrome: A systematic review and meta-analysis. Endocrine, 62(2), 318–325. https://doi.org/10.1007/s12020-018-1692-3

Cao, J., Laabadli, H., Mathis, C. H., Stern, R. D., & Emami-Naeini, P. (2024). "I deleted it after the overturn of Roe v. Wade": Understanding women's privacy concerns toward period-tracking apps in the post-Roe v. Wade era. In Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems (Article 813). ACM. https://doi.org/10.1145/3613904.3642042

Choi, H. K., Lee, S. H., & Yang, S. Y. (2023). Effectiveness of an integrated mobile application for lifestyle modifications in overweight women with polycystic ovarian syndrome: A randomized controlled trial. Life, 13(7), Article 1533. https://doi.org/10.3390/life13071533

Dietz de Loos, A., Jiskoot, G., Louwers, Y., Beerthuizen, A., Busschbach, J., & Laven, J. (2023). Pregnancy outcomes in women with PCOS: Follow-up study of a randomized controlled three-component lifestyle intervention. Journal of Clinical Medicine, 12(2), Article 426. https://doi.org/10.3390/jcm12020426

Dilimulati, D., Shao, X., Wang, L., Cai, M., Zhang, Y., & Qu, S. (2024). Efficacy of WeChat-based digital intervention versus metformin in women with polycystic ovary syndrome: Randomized controlled trial. Journal of Medical Internet Research, 26, Article e55883. https://doi.org/10.2196/55883

Earle, S., Marston, H. R., Hadley, R., & Banks, D. (2021). Use of menstruation and fertility apps by women: A scoping review. BMJ Sexual & Reproductive Health, 47(2), 136–144. https://doi.org/10.1136/bmjsrh-2019-200488

Epstein, D. A., Lee, N. B., Kang, J. H., Agapie, E., Schroeder, J., Pina, L. R., Fogarty, J., Kientz, J. A., & Munson, S. A. (2017). Examining menstrual tracking to inform the design of personal informatics tools. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (pp. 6876–6888). ACM. https://doi.org/10.1145/3025453.3025635

Garanin, A. A., Aydumova, O. Y., & Kiselev, A. R. (2025). Digital twins in healthcare administration: A systematic review on novel approaches to management and planning. Russian Open Medical Journal, 14, Article e0104. https://doi.org/10.15275/rusomj.2025.0104

Hardeman, W., Houghton, J., Lane, K., Jones, A., & Naughton, F. (2019). A systematic review of just-in-time adaptive interventions (JITAIs) to promote physical activity. International Journal of Behavioral Nutrition and Physical Activity, 16, Article 31. https://doi.org/10.1186/s12966-019-0792-7

Hoyos, L. R., Putra, M., Armstrong, A. A., Cheng, C. Y., Riestenberg, C. K., Schooler, T. A., & Dumesic, D. A. (2020). Measures of patient dissatisfaction with health care in polycystic ovary syndrome: Retrospective analysis. Journal of Medical Internet Research, 22(4), Article e16541. https://doi.org/10.2196/16541

Istepanian, R. S., Laxminarayan, S., & Pattichis, C. S. (Eds.). (2006). M-Health: Emerging mobile health systems. Springer. https://doi.org/10.1007/b137697

Jiskoot, G., Dietz de Loos, A., Beerthuizen, A., Timman, R., van Busschbach, J., & Laven, J. (2020). Long-term effects of a three-component lifestyle intervention on emotional well-being in women with polycystic ovary syndrome (PCOS): A secondary analysis of a randomized controlled trial. PLoS One, 15(6), Article e0233876. https://doi.org/10.1371/journal.pone.0233876

Kruse, C., & Corbett, C. F. (2025). Availability and use of digital technology among women with polycystic ovary syndrome: Scoping review. JMIR Infodemiology, 5, Article e68469. https://doi.org/10.2196/68469

Lauer, W., Löbker, W., & Höfgen, B. (2024). Digital health applications (DiGAs) on a fast track: Insights from a data-driven analysis of prescribable digital therapeutics in Germany from 2020 to mid-2024. Journal of Medical Internet Research, 26, Article e59013. https://doi.org/10.2196/59013

Lee, I., Cooney, L. G., Saini, S., Smith, M. E., Sammel, M. D., Allison, K. C., & Dokras, A. (2017). Increased risk of disordered eating in polycystic ovary syndrome. Fertility and Sterility, 107(3), 796–802. https://doi.org/10.1016/j.fertnstert.2016.12.014

Lim, S. S., Hutchison, S. K., Van Ryswyk, E., Norman, R. J., Teede, H. J., & Moran, L. J. (2019). Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database of Systematic Reviews, 3(3), Article CD007506. https://doi.org/10.1002/14651858.CD007506.pub4

Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447–453. https://doi.org/10.1126/science.aax2342

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, Article n71. https://doi.org/10.1136/bmj.n71

Popay, J., Roberts, H., Sowden, A., Petticrew, M., Arai, L., Rogers, M., Britten, N., Roen, K., & Duffy, S. (2006). Guidance on the conduct of narrative synthesis in systematic reviews: A product from the ESRC methods programme. Lancaster University. https://doi.org/10.13140/2.1.1018.4643

Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. (2004). Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertility and Sterility, 81(1), 19–25. https://doi.org/10.1016/j.fertnstert.2003.10.004

Silva, B. M., Rodrigues, J. J., de la Torre Diez, I., López-Coronado, M., & Saleem, K. (2015). Mobile-health: A review of current state in 2015. Journal of Biomedical Informatics, 56, 265–272. https://doi.org/10.1016/j.jbi.2015.06.003

Stepto, N. K., Cassar, S., Joham, A. E., Hutchison, S. K., Harrison, C. L., Goldstein, R. F., & Teede, H. J. (2013). Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic-hyperinsulinaemic clamp. Human Reproduction, 28(3), 777–784. https://doi.org/10.1093/humrep/des463

Sterne, J. A., Savović, J., Page, M. J., Elbers, R. G., Blencowe, N. S., Boutron, I., Cates, C. J., Cheng, H. Y., Corbett, M. S., Eldridge, S. M., Emberson, J. R., Hernán, M. A., Hopewell, S., Hróbjartsson, A., Junqueira, D. R., Jüni, P., Kirkham, J. J., Lasserson, T., Li, T., … Higgins, J. P. (2019). RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ, 366, Article l4898. https://doi.org/10.1136/bmj.l4898

Stoyanov, S. R., Hides, L., Kavanagh, D. J., Zelenko, O., Tjondronegoro, D., & Mani, M. (2015). Mobile App Rating Scale: A new tool for assessing the quality of health mobile apps. JMIR mHealth and uHealth, 3(1), Article e27. https://doi.org/10.2196/mhealth.3422

Symul, L., Wac, K., Hillard, P., & Salathé, M. (2019). Assessment of menstrual health status and evolution through mobile apps for fertility awareness. npj Digital Medicine, 2(1), Article 64. https://doi.org/10.1038/s41746-019-0139-4

Teede, H. J., Tay, C. T., Laven, J. J., Dokras, A., Moran, L. J., Piltonen, T. T., & Boyle, J. A. (2023). Recommendations from the 2023 international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertility and Sterility, 120(4), 767–793. https://doi.org/10.1016/j.fertnstert.2023.07.025

World Health Organization. (2021). Ethics and governance of artificial intelligence for health: WHO guidance. World Health Organization. https://www.who.int/publications/i/item/9789240029200

Xie, J., Xu, R., & Teede, H. (2018). Personalized mobile tool AskPCOS delivering evidence-based quality information about polycystic ovary syndrome. Seminars in Reproductive Medicine, 36(1), 66–72. https://doi.org/10.1055/s-0038-1667156

Yadav, S., Delau, O., & Azziz, R. (2023). Direct economic burden of mental health disorders associated with polycystic ovary syndrome: Systematic review and meta-analysis. eLife, 12, Article e85338. https://doi.org/10.7554/eLife.85338

Views:

50

Downloads:

9

Published
2026-01-28
Citations
How to Cite
Maksymilian Głaz, Łukasz Deska, Szymon Zysiak, Dawid Głaz, Natalia Kamińska, Jędrzej Zaguła, Wojciech Sołtys, Cezary Kosmecki, Mateusz Stronczyński, & Kacper Wicha. (2026). MOBILE HEALTH APPLICATIONS IN MANAGEMENT OF POLYCYSTIC OVARY SYNDROME (PCOS): A SYSTEMATIC REVIEW OF CLINICAL EFFICACY, QUALITY, AND SOCIO-ECONOMIC IMPLICATIONS. International Journal of Innovative Technologies in Social Science, (1(49). https://doi.org/10.31435/ijitss.1(49).2026.4653

Most read articles by the same author(s)