DETECTABLE IN-BLOOD BRCA1 METHYLATION AS A BIOMARKER OF BREAST CANCER PREDISPOSITION
Abstract
Germline BRCA1 mutations are a well-established risk factor for the development of breast cancer. Nevertheless, many patients who present with a clinical phenotype typical of BRCA1-associated tumors do not carry pathogenic BRCA1 mutations. Current risk models are inadequate, highlighting the need for new biomarkers. In this context, blood-based epigenetic markers such as DNA methylation are being explored. Many studies have examined BRCA1 promoter methylation in blood DNA as a BC risk marker. Retrospective analyses report that BRCA1 methylation in blood correlates with higher risk in triple-negative tumors. However, findings remain inconsistent due to numerous technical issues, including methodological variability, assay limitations, and differences in targeted CpG sites. This review highlights the risk of developing breast cancer in women with a methylated BRCA1 promoter in peripheral blood-derived DNA, as well as the potential drawbacks and challenges in this area.
Methodology: Relevant studies were identified through a targeted search of the PubMed database using keywords such as “BRCA1,” “methylation,” “breast cancer,” and “blood DNA.” Inclusion criteria comprised studies evaluating BRCA1 promoter methylation in blood-derived DNA in relation to breast cancer risk. Studies analyzing BRCA1 promoter methylation exclusively in tumor tissue or other non-blood specimens were excluded.
References
Ahmad, A. (2019). Breast Cancer Statistics: Recent Trends. Advances in Experimental Medicine and Biology, 1152, 1–7. https://doi.org/10.1007/978-3-030-20301-6_1
Bosviel, R., Garcia, S., Lavediaux, G., Michard, E., Dravers, M., Kwiatkowski, F., Bignon, Y.-J., & Bernard-Gallon, D. J. (2012). BRCA1 promoter methylation in peripheral blood DNA was identified in sporadic breast cancer and controls. Cancer Epidemiology, 36(3), e177-182. https://doi.org/10.1016/j.canep.2012.02.001
Chen, Y., Toland, A. E., McLennan, J., Fridlyand, J., Crawford, B., Costello, J. F., & Ziegler, J. L. (2006). Lack of germ-line promoter methylation in BRCA1-negative families with familial breast cancer. Genetic Testing, 10(4), 281–284. https://doi.org/10.1089/gte.2006.10.281
Cho, Y. H., McCullough, L. E., Gammon, M. D., Wu, H.-C., Zhang, Y.-J., Wang, Q., Xu, X., Teitelbaum, S. L., Neugut, A. I., Chen, J., & Santella, R. M. (2015). Promoter Hypermethylation in White Blood Cell DNA and Breast Cancer Risk. Journal of Cancer, 6(9), 819–824. https://doi.org/10.7150/jca.12174
Cho, Y. H., Yazici, H., Wu, H.-C., Terry, M. B., Gonzalez, K., Qu, M., Dalay, N., & Santella, R. M. (2010). Aberrant promoter hypermethylation and genomic hypomethylation in tumor, adjacent normal tissues and blood from breast cancer patients. Anticancer Research, 30(7), 2489–2496.
Claus, E. B., Schildkraut, J. M., Thompson, W. D., & Risch, N. J. (1996). The genetic attributable risk of breast and ovarian cancer. Cancer, 77(11), 2318–2324. https://doi.org/10.1002/(SICI)1097-0142(19960601)77:11%253C2318::AID-CNCR21%253E3.0.CO;2-Z
Colella, S., Shen, L., Baggerly, K. A., Issa, J. P., & Krahe, R. (2003). Sensitive and quantitative universal Pyrosequencing methylation analysis of CpG sites. BioTechniques, 35(1), 146–150. https://doi.org/10.2144/03351md01
Daniels, S. L., Burghel, G. J., Chambers, P., Al-Baba, S., Connley, D. D., Brock, I. W., Cramp, H. E., Dotsenko, O., Wilks, O., Wyld, L., Cross, S. S., & Cox, A. (2016). Levels of DNA Methylation Vary at CpG Sites across the BRCA1 Promoter, and Differ According to Triple Negative and “BRCA-Like” Status, in Both Blood and Tumour DNA. PloS One, 11(7), e0160174. https://doi.org/10.1371/journal.pone.0160174
Evans, D. G. R., van Veen, E. M., Byers, H. J., Wallace, A. J., Ellingford, J. M., Beaman, G., Santoyo-Lopez, J., Aitman, T. J., Eccles, D. M., Lalloo, F. I., Smith, M. J., & Newman, W. G. (2018). A Dominantly Inherited 5’ UTR Variant Causing Methylation-Associated Silencing of BRCA1 as a Cause of Breast and Ovarian Cancer. American Journal of Human Genetics, 103(2), 213–220. https://doi.org/10.1016/j.ajhg.2018.07.002
Glodzik, D., Bosch, A., Hartman, J., Aine, M., Vallon-Christersson, J., Reuterswärd, C., Karlsson, A., Mitra, S., Niméus, E., Holm, K., Häkkinen, J., Hegardt, C., Saal, L. H., Larsson, C., Malmberg, M., Rydén, L., Ehinger, A., Loman, N., Kvist, A., … Staaf, J. (2020). Comprehensive molecular comparison of BRCA1 hypermethylated and BRCA1 mutated triple negative breast cancers. Nature Communications, 11(1), 3747. https://doi.org/10.1038/s41467-020-17537-2
Hansmann, T., Pliushch, G., Leubner, M., Kroll, P., Endt, D., Gehrig, A., Preisler-Adams, S., Wieacker, P., & Haaf, T. (2012). Constitutive promoter methylation of BRCA1 and RAD51C in patients with familial ovarian cancer and early-onset sporadic breast cancer. Human Molecular Genetics, 21(21), 4669–4679. https://doi.org/10.1093/hmg/dds308
Herman, J. G., Graff, J. R., Myöhänen, S., Nelkin, B. D., & Baylin, S. B. (1996). Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands. Proceedings of the National Academy of Sciences of the United States of America, 93(18), 9821–9826. https://doi.org/10.1073/pnas.93.18.9821
Jain, S., Chen, S., Chang, K.-C., Lin, Y.-J., Hu, C.-T., Boldbaatar, B., Hamilton, J. P., Lin, S. Y., Chang, T.-T., Chen, S.-H., Song, W., Meltzer, S. J., Block, T. M., & Su, Y.-H. (2012). Impact of the location of CpG methylation within the GSTP1 gene on its specificity as a DNA marker for hepatocellular carcinoma. PloS One, 7(4), e35789. https://doi.org/10.1371/journal.pone.0035789
Kontorovich, T., Cohen, Y., Nir, U., & Friedman, E. (2009). Promoter methylation patterns of ATM, ATR, BRCA1, BRCA2 and p53 as putative cancer risk modifiers in Jewish BRCA1/BRCA2 mutation carriers. Breast Cancer Research and Treatment, 116(1), 195–200. https://doi.org/10.1007/s10549-008-0121-3
Lan, V. T. T., Ha, N. T., Uyen, N. Q., Duong, N. T., Huong, N. T. T., Thuan, T. B., Duong, P. A. T., & To, T. V. (2014). Standardization of the methylation‑specific PCR method for analyzing BRCA1 and ER methylation. Molecular Medicine Reports, 9(5), 1844–1850. https://doi.org/10.3892/mmr.2014.1990
Lønning, P. E., Nikolaienko, O., Pan, K., Kurian, A. W., Eikesdal, H. P., Pettinger, M., Anderson, G. L., Prentice, R. L., Chlebowski, R. T., & Knappskog, S. (2022a). Constitutional BRCA1 Methylation and Risk of Incident Triple-Negative Breast Cancer and High-grade Serous Ovarian Cancer. JAMA Oncology, 8(11), 1579–1587. https://doi.org/10.1001/jamaoncol.2022.3846
Lønning, P. E., Nikolaienko, O., Pan, K., Kurian, A. W., Eikesdal, H. P., Pettinger, M., Anderson, G. L., Prentice, R. L., Chlebowski, R. T., & Knappskog, S. (2022b). Constitutional BRCA1 Methylation and Risk of Incident Triple-Negative Breast Cancer and High-grade Serous Ovarian Cancer. JAMA Oncology, 8(11), 1579–1587. https://doi.org/10.1001/jamaoncol.2022.3846
Lønning, P. E., Nikolaienko, O., Pan, K., Kurian, A. W., Eikesdal, H. P., Pettinger, M., Anderson, G. L., Prentice, R. L., Chlebowski, R. T., & Knappskog, S. (2022c). Constitutional BRCA1 Methylation and Risk of Incident Triple-Negative Breast Cancer and High-grade Serous Ovarian Cancer. JAMA Oncology, 8(11), 1579–1587. https://doi.org/10.1001/jamaoncol.2022.3846
Malley, D. S., Hamoudi, R. A., Kocialkowski, S., Pearson, D. M., Collins, V. P., & Ichimura, K. (2011a). A distinct region of the MGMT CpG island critical for transcriptional regulation is preferentially methylated in glioblastoma cells and xenografts. Acta Neuropathologica, 121(5), 651–661. https://doi.org/10.1007/s00401-011-0803-5
Malley, D. S., Hamoudi, R. A., Kocialkowski, S., Pearson, D. M., Collins, V. P., & Ichimura, K. (2011b). A distinct region of the MGMT CpG island critical for transcriptional regulation is preferentially methylated in glioblastoma cells and xenografts. Acta Neuropathologica, 121(5), 651–661. https://doi.org/10.1007/s00401-011-0803-5
Pang, D., Zhao, Y., Xue, W., Shan, M., Chen, Y., Zhang, Y., Zhang, G., Liu, F., Li, D., & Yang, Y. (2012). Methylation profiles of the BRCA1 promoter in hereditary and sporadic breast cancer among Han Chinese. Medical Oncology (Northwood, London, England), 29(3), 1561–1568. https://doi.org/10.1007/s12032-011-0100-0
Pepin, M. E., Ha, C.-M., Potter, L. A., Bakshi, S., Barchue, J. P., Haj Asaad, A., Pogwizd, S. M., Pamboukian, S. V., Hidalgo, B. A., Vickers, S. M., & Wende, A. R. (2021). Racial and socioeconomic disparity associates with differences in cardiac DNA methylation among men with end-stage heart failure. American Journal of Physiology. Heart and Circulatory Physiology, 320(5), H2066–H2079. https://doi.org/10.1152/ajpheart.00036.2021
Rand, K., Qu, W., Ho, T., Clark, S. J., & Molloy, P. (2002). Conversion-specific detection of DNA methylation using real-time polymerase chain reaction (ConLight-MSP) to avoid false positives. Methods (San Diego, Calif.), 27(2), 114–120. https://doi.org/10.1016/s1046-2023(02)00062-2
Roy, D., & Tiirikainen, M. (2020). Diagnostic Power of DNA Methylation Classifiers for Early Detection of Cancer. Trends in Cancer, 6(2), 78–81. https://doi.org/10.1016/j.trecan.2019.12.006
Scott, C. M., Wong, E. M., Joo, J. E., Dugué, P.-A., Jung, C.-H., O’Callaghan, N., Dowty, J., Giles, G. G., Hopper, J. L., & Southey, M. C. (2018). Genome-wide DNA methylation assessment of “BRCA1-like” early-onset breast cancer: Data from the Australian Breast Cancer Family Registry. Experimental and Molecular Pathology, 105(3), 404–410. https://doi.org/10.1016/j.yexmp.2018.11.006
Sekine, M., Nishino, K., & Enomoto, T. (2021). Differences in Ovarian and Other Cancers Risks by Population and BRCA Mutation Location. Genes, 12(7), 1050. https://doi.org/10.3390/genes12071050
Song, M.-A., Seffernick, A. E., Archer, K. J., Mori, K. M., Park, S.-Y., Chang, L., Ernst, T., Tiirikainen, M., Peplowska, K., Wilkens, L. R., Le Marchand, L., & Lim, U. (2021). Race/ethnicity-associated blood DNA methylation differences between Japanese and European American women: An exploratory study. Clinical Epigenetics, 13(1), 188. https://doi.org/10.1186/s13148-021-01171-w
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
van Vlodrop, I. J. H., Niessen, H. E. C., Derks, S., Baldewijns, M. M. L. L., van Criekinge, W., Herman, J. G., & van Engeland, M. (2011a). Analysis of promoter CpG island hypermethylation in cancer: Location, location, location! Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 17(13), 4225–4231. https://doi.org/10.1158/1078-0432.CCR-10-3394
van Vlodrop, I. J. H., Niessen, H. E. C., Derks, S., Baldewijns, M. M. L. L., van Criekinge, W., Herman, J. G., & van Engeland, M. (2011b). Analysis of promoter CpG island hypermethylation in cancer: Location, location, location! Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 17(13), 4225–4231. https://doi.org/10.1158/1078-0432.CCR-10-3394
Vos, S., Moelans, C. B., & van Diest, P. J. (2017). BRCA promoter methylation in sporadic versus BRCA germline mutation-related breast cancers. Breast Cancer Research: BCR, 19(1), 64. https://doi.org/10.1186/s13058-017-0856-z
Wong, E. M., Southey, M. C., Fox, S. B., Brown, M. A., Dowty, J. G., Jenkins, M. A., Giles, G. G., Hopper, J. L., & Dobrovic, A. (2011a). Constitutional methylation of the BRCA1 promoter is specifically associated with BRCA1 mutation-associated pathology in early-onset breast cancer. Cancer Prevention Research (Philadelphia, Pa.), 4(1), 23–33. https://doi.org/10.1158/1940-6207.CAPR-10-0212
Wong, E. M., Southey, M. C., Fox, S. B., Brown, M. A., Dowty, J. G., Jenkins, M. A., Giles, G. G., Hopper, J. L., & Dobrovic, A. (2011b). Constitutional methylation of the BRCA1 promoter is specifically associated with BRCA1 mutation-associated pathology in early-onset breast cancer. Cancer Prevention Research (Philadelphia, Pa.), 4(1), 23–33. https://doi.org/10.1158/1940-6207.CAPR-10-0212
Wong, E. M., Southey, M. C., & Terry, M. B. (2020). Integrating DNA methylation measures to improve clinical risk assessment: Are we there yet? The case of BRCA1 methylation marks to improve clinical risk assessment of breast cancer. British Journal of Cancer, 122(8), 1133–1140. https://doi.org/10.1038/s41416-019-0720-2
Copyright (c) 2026 Konrad Borowski, Oskar Pastuszek, Maja Radziwon, Emilia Bolesta-Okuniewska, Paweł Michalak, Aleksandra Marchwińska-Pancer, Katarzyna Kopeć, Julia Ceryn, Patryk Marchwiany

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

