PREDICTING AFFECTIVE EPISODES THROUGH DIGITAL MONITORING OF CIRCADIAN RHYTHM DISTURBANCES: A SYSTEMATIC REVIEW OF MODERN TECHNOLOGY APPLICATIONS

Keywords: Affective Disorders, Prediction Models, Circadian Rhythms, Mobile Health Monitoring, Digital Psychiatry

Abstract

Introduction: Affective disorders are serious, long-lasting, and often relapsing conditions that strike an individual unpredictably. The ideal psychiatric monitoring mechanism would predict coming episodes before their full-blown clinical symptoms develop. This would be a tremendous advance and may be possible using our current understanding of the nature of affective disorders, portable device-based data collection capabilities, and remote data analysis. There are numerous reviews of the literature that cover the symptom recognition of affective disorders using mobile devices, but there are no reviews on the actual prediction of affective episodes. This review aims to cover that gap.
Methods: A systematic review of five databases (2016-2025) was conducted and included 10 observational studies, mostly designed as prospective cohorts, that concentrated on the prognosis of affective disorders and utilized wearable devices. The variables under study were circadian parameters, sleep metrics, amounts and intensity of physical activity, and light exposure. Although the methodological diversity among the studies made direct comparisons problematic, the studies allowed for the identification of certain findings that appear promising for predicting the occurrence of affective episodes.
Results: The review encompassed 10 observational studies (1416 subjects). Our synthesis showed that it is possible, even feasible, to predict affective episodes using mathematical models. These models assess the types of characteristic disturbances that individuals with affective disorders have in their circadian rhythms. When we applied some standard methods for doing this kind of analysis (Accuracy Metrics and AUC Values), the results gave us AUC values that ranged from about 0.67 to 0.98, depending on several factors.
Conclusions: Predicting affective episodes is possible using wearable technology or smartphone app, which can detect disturbances in a person's circadian rhythm. Currently, the best methods for doing this merit a look because they could indeed allow for early intervention before the onset of manic or depressive symptoms.

References

Antosik-Wójcińska, A. Z., Dominiak, M., Chojnacka, M., Kaczmarek-Majer, K., Opara, K. R., Radziszewska, W., Olwert, A., & Święcicki, Ł. (2020). Smartphone as a monitoring tool for bipolar disorder: A systematic review including data analysis, machine learning algorithms and predictive modelling. International Journal of Medical Informatics, 138, Article 104131. https://doi.org/10.1016/j.ijmedinf.2020.104131

Armitage, R., & Hoffmann, R. F. (2001). Sleep EEG, depression and gender. Sleep Medicine Reviews, 5(3), 237-246. https://doi.org/10.1053/smrv.2000.0144

Armitage, R. (2007). Sleep and circadian rhythms in mood disorders. Acta Psychiatrica Scandinavica, 115(s433), 104–115. https://doi.org/10.1111/j.1600-0447.2007.00968.x

Averous, P., Charbonnier, E., & Dany, L. (2020). Relationship between illness representations, psychosocial adjustment, and treatment outcomes in mental disorders: A mini review. Frontiers in Psychology, 11, Article 1167. https://doi.org/10.3389/fpsyg.2020.01167

Benedetti, F., Serretti, A., Colombo, C., Barbini, B., Lorenzi, C., Campori, E., & Smeraldi, E. (2003). Influence of CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 123B(1), 23-26. https://doi.org/10.1002/ajmg.b.20038

Bradley, A. J., Webb-Mitchell, R., Hazu, A., Slater, N., Middleton, B., Gallagher, P., McAllister-Williams, H., & Anderson, K. N. (2017). Sleep and circadian rhythm disturbance in bipolar disorder. Psychological Medicine, 47(9), 1678-1689. https://doi.org/10.1017/S0033291717000186

Braund, T. A., Zin, M. T., Boonstra, T. W., Wong, Q. J. J., Larsen, M. E., Christensen, H., Tillman, G., & O'Dea, B. (2022). Smartphone sensor data for identifying and monitoring symptoms of mood disorders: A longitudinal observational study. JMIR Mental Health, 9(5), Article e35549. https://doi.org/10.2196/35549

Busk, J., Faurholt-Jepsen, M., Frost, M., Bardram, J. E., Vedel Kessing, L., & Winther, O. (2020). Forecasting mood in bipolar disorder from smartphone self-assessments: Hierarchical Bayesian approach. JMIR mHealth and uHealth, 8(4), Article e15028. https://doi.org/10.2196/15028

Carr, O., Saunders, K. E. A., Bilderbeck, A. C., Tsanas, A., Palmius, N., Geddes, J. R., Foster, R., De Vos, M., & Goodwin, G. M. (2018). Desynchronization of diurnal rhythms in bipolar disorder and borderline personality disorder. Translational Psychiatry, 8(1), Article 79. https://doi.org/10.1038/s41398-018-0125-7

Cho, C., Lee, T., Kim, M., In, H., Kim, L., & Lee, H. (2019). Mood prediction of patients with mood disorders by machine learning using passive digital phenotypes based on the circadian rhythm: Prospective observational cohort study. Journal of Medical Internet Research, 21(4), Article e11029. https://doi.org/10.2196/11029

Cho, C. H., Lee, T., Lee, J. B., Seo, J. Y., Jee, H. J., Son, S., An, H., Kim, L., & Lee, H. J. (2020). Effectiveness of a smartphone app with a wearable activity tracker in preventing the recurrence of mood disorders: Prospective case-control study. JMIR Mental Health, 7(8), Article e21283. https://doi.org/10.2196/21283

Dobrovinskaya, O., Alamilla, J., & Olivas-Aguirre, M. (2024). Impact of modern lifestyle on circadian health and its contribution to adipogenesis and cancer risk. Cancers, 16(21), Article 3706. https://doi.org/10.3390/cancers16213706

Dollish, H. K., Tsyglakova, M., & McClung, C. A. (2024). Circadian rhythms and mood disorders: Time to see the light. Neuron, 112(1), 25-40. https://doi.org/10.1016/j.neuron.2023.09.023

Dunster, G. P., Swendsen, J., & Merikangas, K. R. (2021). Real-time mobile monitoring of bipolar disorder: A review of evidence and future directions. Neuropsychopharmacology, 46(1), 197-208. https://doi.org/10.1038/s41386-020-00830-5

Esaki, Y., Obayashi, K., Saeki, K., Fujita, K., Iwata, N., & Kitajima, T. (2021). Association between circadian activity rhythms and mood episode relapse in bipolar disorder: A 12-month prospective cohort study. Translational Psychiatry, 11(1), Article 525. https://doi.org/10.1038/s41398-021-01652-9

Gershon, A., Ram, N., Johnson, S. L., Harvey, A. G., & Zeitzer, J. M. (2016). Daily actigraphy profiles distinguish depressive and interepisode states in bipolar disorder. Clinical Psychological Science, 4(4), 641-650. https://doi.org/10.1177/2167702615604613

Grierson, A. B., Hickie, I. B., Naismith, S. L., Hermens, D. F., Scott, E. M., & Scott, J. (2016). Circadian rhythmicity in emerging mood disorders: State or trait marker? International Journal of Bipolar Disorders, 4(1), Article 3. https://doi.org/10.1186/s40345-015-0043-z

Havermans, R., Nicolson, N. A., Berkhof, J., & deVries, M. W. (2010). Mood reactivity to daily events in patients with remitted bipolar disorder. Psychiatry Research, 179(1), 47-52. https://doi.org/10.1016/j.psychres.2009.10.020

Hickman, R., D'Oliveira, T. C., Davies, A., & Shergill, S. (2024). Monitoring daily sleep, mood, and affect using digital technologies and wearables: A systematic review. Sensors, 24(14), Article 4701. https://doi.org/10.3390/s24144701

Hudson, J. I., Lipinski, J. F., Keck, P. E., Jr., Aizley, H. G., Lukas, S. E., Rothschild, A. J., Waternaux, C. M., & Kupfer, D. J. (1992). Polysomnographic characteristics of young manic patients. Comparison with unipolar depressed patients and normal control subjects. Archives of General Psychiatry, 49(5), 378-383. https://doi.org/10.1001/archpsyc.1992.01820050042006

Jeong, S., Seo, J. Y., Jeon, S., Cho, C., Yeom, J. W., Jeong, J., Lee, J., Lee, T., & Lee, H. (2020). Circadian rhythm of heart rate assessed by wearable devices tends to correlate with the circadian rhythm of salivary cortisol concentration in healthy young adults. Chronobiology in Medicine, 2(3), 109–114. https://doi.org/10.33069/cim.2020.0022

Kim, B., Chae, M., Kim, Y., Kong, S., Kim, Y., Jung, T., Jeong, J., Park, S., Cho, C., Yeom, J. W., Lee, T., Lee, H., & Lee, H. (2024). Early prediction of depressive episodes in mood disorders using circadian rhythm indicators and deep learning. 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 6411–6418. https://doi.org/10.1109/bibm62325.2024.10822654

Kumagai, N., Esaki, T., & Lee, H. (2019). Predicting recurrence of depression using lifelog data: An explanatory feasibility study with a panel VAR approach. BMC Psychiatry, 19(1), Article 391. https://doi.org/10.1186/s12888-019-2382-2

Lanfumey, L., Mongeau, R., & Hamon, M. (2013). Biological rhythms and melatonin in mood disorders and their treatments. Pharmacology & Therapeutics, 138(2), 176-184. https://doi.org/10.1016/j.pharmthera.2013.01.005

Lanata, A., Valenza, G., Nardelli, M., Gentili, C., & Scilingo, E. P. (2015). Complexity index from a personalized wearable monitoring system for assessing remission in mental health. IEEE Journal of Biomedical and Health Informatics, 19(1), 132-139. https://doi.org/10.1109/JBHI.2014.2360711

Lee, Y., Lee, J., Kwon, I., Nakajima, Y., Ohmiya, Y., Son, G. H., Lee, K. H., & Kim, K. (2010). Coactivation of the CLOCK-BMAL1 complex by CBP mediates resetting of the circadian clock. Journal of Cell Science, 123(20), 3547-3557. https://doi.org/10.1242/jcs.070300

Lee, A., Myung, S. K., Cho, J. J., Jung, Y. J., Yoon, J. L., & Kim, M. Y. (2017). Night shift work and risk of depression: Meta-analysis of observational studies. Journal of Korean Medical Science, 32(7), 1091-1096. https://doi.org/10.3346/jkms.2017.32.7.1091

Lee, H. J., Cho, C. H., Lee, T., Jeong, J., Yeom, J. W., Kim, S., Jeon, S., Seo, J. Y., Moon, E., Baek, J. H., Park, D. Y., Kim, S. J., Ha, T. H., Cha, B., Kang, H. J., Ahn, Y. M., Lee, Y., Lee, J. B., & Kim, L. (2023). Prediction of impending mood episode recurrence using real-time digital phenotypes in major depression and bipolar disorders in South Korea: A prospective nationwide cohort study. Psychological Medicine, 53(12), 5636-5644. https://doi.org/10.1017/S0033291722002847

Lewy, A. J., Wehr, T. A., Goodwin, F. K., Newsome, D. A., & Rosenthal, N. E. (1981). Manic-depressive patients may be supersensitive to light. The Lancet, 1(8216), 383-384. https://doi.org/10.1016/s0140-6736(81)91697-4

Lewy, A. J., Sack, R. L., Miller, L. S., & Hoban, T. M. (1987). Antidepressant and circadian phase-shifting effects of light. Science, 235(4786), 352-354. https://doi.org/10.1126/science.3798117

Lipschitz, J. M., Lin, S., Saghafian, S., Pike, C. K., & Burdick, K. E. (2025). Digital phenotyping in bipolar disorder: Using longitudinal Fitbit data and personalized machine learning to predict mood symptomatology. Acta Psychiatrica Scandinavica, 151(3), 434-447. https://doi.org/10.1111/acps.13765

Lyu, H., Huang, H., He, J., Zhu, S., Hong, W., Lai, J., Gao, T., Shao, J., Zhu, J., Li, Y., & Hu, S. (2024). Task-state skin potential abnormalities can distinguish major depressive disorder and bipolar depression from healthy controls. Translational Psychiatry, 14(1). https://doi.org/10.1038/s41398-024-02828-9

Malkoff-Schwartz, S., Frank, E., Anderson, B., Sherrill, J. T., Siegel, L., Patterson, D., & Kupfer, D. J. (1998). Stressful life events and social rhythm disruption in the onset of manic and depressive bipolar episodes: A preliminary investigation. Archives of General Psychiatry, 55(8), 702–707. https://doi.org/10.1001/archpsyc.55.8.702

McCarthy, M. J., Gottlieb, J. F., Gonzalez, R., McClung, C. A., Alloy, L. B., Cain, S., Dulcis, D., Etain, B., Frey, B. N., Garbazza, C., Ketchesin, K. D., Landgraf, D., Lee, H. J., Marie-Claire, C., Nusslock, R., Porcu, A., Porter, R., Ritter, P., Scott, J., ... Murray, G. (2022). Neurobiological and behavioral mechanisms of circadian rhythm disruption in bipolar disorder: A critical multi-disciplinary literature review and agenda for future research from the ISBD task force on chronobiology. Bipolar Disorders, 24(3), 232-263. https://doi.org/10.1111/bdi.13165

McClung, C. A. (2013). How might circadian rhythms control mood? Let me count the ways. Biological Psychiatry, 74(4), 242–249. https://doi.org/10.1016/j.biopsych.2013.02.019

Moon, J. H., Cho, C. H., Son, G. H., Geum, D., Chung, S., Kim, H., Kang, S. G., Park, Y. M., Yoon, H. K., Kim, L., Jee, H. J., An, H., Kripke, D. F., & Lee, H. J. (2016). Advanced circadian phase in mania and delayed circadian phase in mixed mania and depression returned to normal after treatment of bipolar disorder. EBioMedicine, 11, 285-295. https://doi.org/10.1016/j.ebiom.2016.08.019

Mughal, F., Raffe, W., Stubbs, P., Kneebone, I., & Garcia, J. (2022). Fitbits for monitoring depressive symptoms in older aged persons: Qualitative feasibility study. JMIR Formative Research, 6(11), Article e33952. https://doi.org/10.2196/33952

Ng, T. H., Chung, K. F., Ho, F. Y. Y., Yeung, W. F., Yung, K. P., & Lam, T. H. (2015). Sleep–wake disturbance in interepisode bipolar disorder and high-risk individuals: A systematic review and meta-analysis. Sleep Medicine Reviews, 20, 46–58. https://doi.org/10.1016/j.smrv.2014.06.006

Nurnberger, J. I., Jr., Adkins, S., Lahiri, D. K., Mayeda, A., Hu, K., Lewy, A., Miller, A., Bowman, E. S., Miller, M. J., Rau, L., Smiley, C., & Davis-Singh, D. (2000). Melatonin suppression by light in euthymic bipolar and unipolar patients. Archives of General Psychiatry, 57(6), 572-579. https://doi.org/10.1001/archpsyc.57.6.572

Ringeval, M., Wagner, G., Denford, J., Paré, G., & Kitsiou, S. (2020). Fitbit-based interventions for healthy lifestyle outcomes: Systematic review and meta-analysis. Journal of Medical Internet Research, 22(10), Article e23954. https://doi.org/10.2196/23954

Robillard, R., Naismith, S. L., Rogers, N. L., Ip, T. K. C., Hermens, D. F., Scott, E. M., & Hickie, I. B. (2013). Delayed sleep phase in young people with unipolar or bipolar affective disorders. Journal of Affective Disorders, 145(2), 260–263. https://doi.org/10.1016/j.jad.2012.06.006

Shen, G. H. C., Alloy, L. B., Abramson, L. Y., & Sylvia, L. G. (2008). Lifestyle regularity and cyclothymic symptomatology. Journal of Clinical Psychology, 64(4), 482–500. https://doi.org/10.1002/jclp.20440

Song, Y. M., Jeong, J., de Los Reyes, A. A., 5th, Lim, D., Cho, C. H., Yeom, J. W., Lee, T., Lee, J. B., Lee, H. J., & Kim, J. K. (2024). Causal dynamics of sleep, circadian rhythm, and mood symptoms in patients with major depression and bipolar disorder: Insights from longitudinal wearable device data. EBioMedicine, 103, Article 105094. https://doi.org/10.1016/j.ebiom.2024.105094

Takaesu, Y. (2018). Circadian rhythm in bipolar disorder: A review of the literature. Psychiatry and Clinical Neurosciences, 72(9), 673–682. https://doi.org/10.1111/pcn.12688

Takaesu, Y., Inoue, Y., Murakoshi, A., Komada, Y., Otsuka, A., Futenma, K., & Mishima, K. (2016). Prevalence of circadian rhythm sleep-wake disorders and associated factors in euthymic patients with bipolar disorder. PLOS ONE, 11(7), Article e0159578. https://doi.org/10.1371/journal.pone.0159578

Van Til, K., Youngstrom, E. A., & Allen, N. B. (2019). A comparative study of engagement in mobile and wearable health monitoring for bipolar disorder. Bipolar Disorders, 21(3), 284–294. https://doi.org/10.1111/bdi.12849

Wenze, S. J., & Miller, I. W. (2010). Use of ecological momentary assessment in mood disorders research. Clinical Psychology Review, 30(6), 794–804. https://doi.org/10.1016/j.cpr.2010.06.007

Wirz-Justice, A., & Benedetti, F. (2019). Perspectives in affective disorders: Clocks and sleep. European Journal of Neuroscience, 51(1), 346–365. https://doi.org/10.1111/ejn.14362

Wu, Y. (2024). The impact of circadian rhythm on bipolar disorder. Proceedings of ICBioMed 2024 Workshop: Computational Proteomics in Drug Discovery and Development from Medicinal Plants. https://doi.org/10.54254/2753-8818/65/2024.LA18038

Views:

1093

Downloads:

1059

Published
2025-05-30
Citations
How to Cite
Piotr Łapiński, Mateusz Świątko, Anna Tokarska, Marcin Grzebyk, Aleksandra Arnista, Joanna Rybak, Katarzyna Gawrońska, Agnieszka Waszczuk, Aleksandra Kołodziejczyk, & Paweł Sosnowski. (2025). PREDICTING AFFECTIVE EPISODES THROUGH DIGITAL MONITORING OF CIRCADIAN RHYTHM DISTURBANCES: A SYSTEMATIC REVIEW OF MODERN TECHNOLOGY APPLICATIONS. International Journal of Innovative Technologies in Social Science, (2(46). https://doi.org/10.31435/ijitss.2(46).2025.3281