PREDICTION OF SEISMIC INTENSITY IN URBAN AREAS. CASE STUDY OF THE CITY OF BATNA, ALGERIA
Abstract
Knowledge of a non-instrumental measurement is one of the most remarkable scientific assets; unfortunately, in seismology, it is considered the least predictable, but it does play an important role in assessing seismic risk. Batna, the capital of the Aurès region, is located in northeastern Algeria at an elevation of 1058 me, 435 km southeast of the capital Algiers, and is one of Algeria’s five most important cities. Batna is also a highly vulnerable city due to the proliferation of dwellings that do not comply with seismic recommendations. Thus, it was classified as a low seismicity zone based solely on historical data from recent decades. Our work consists of analyzing and correlating historical and instrumental seismicity at the regional and local levels:the cataloged seismicity data for northeastern Algeria from 1856 to 2018 includes 3354 epicenters. To that end, our approach is based on three major axes: (a) seismic data analysis, (b) determination of seismic intensity attenuation for a target zone (the city of Batna), and (c) assessment of seismic hazardin terms of maximum expected intensity for a given return time. Using the distribution of GUMBEL Extreme Values (I and III), we were able to identify the reasonable maximum intensity limit for the city of Batna, which was estimated to be VII (MM) for a 100-year return period. This assessment provides critical support and a sound reference for the risk scenario to warn public authorities and citizens about the damages that may result from the occurrence of future earthquakes, allowing for the development of appropriate ORSEC plans and a strategy for managing and reducing seismic risk.
References
Abacha, I. (2015). Étude de la sismicité de la région Nord-Est de l’Algérie. Université Ferhat Abbas-Sétif.
Albarello, D., & Mucciarelli, M. (2002). Seismic Hazard Estimates Using Ill-defined Macroseismic Data at Site. Pure and Applied Geophysics, 159(6), 1289–1304. https://doi.org/10.1007/s00024-002-8682-2
Ameer, A. S., Sharma, M. L., Wason, H. R., & Alsinawi, S. A. (2004). Seismic hazard characterization and risk evaluation using Gumbel’s method of extremes (G1 and G3) and GR formula for Iraq. 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2898. https://www.researchgate.net/profile/Mukat-Sharma/publication/267768010_seismic_hazard_characterization_and_risk_evaluation_using_gumbel’s_method_of_extremes_g1_and_g3_and_gr_formula_for_iraq/links/584db93008aeb989252643a8/seismic-hazard-characterization-and-risk-evaluation-using-gumbels-method-of-extremes-g1-and-g3-and-g-r-formula-for-iraq.pdf
Aoudia, A., Vaccari, F., Suhadolc, P., & Meghraoui, M. (2000). Seismogenic potential and earthquake hazard assessment in the Tell Atlas of Algeria. J Seismol, 4(1), 79–98. https://doi.org/https://doi.org/10.1023/A:1009848714019
Benaouali-Mebarek, N., Frizon de Lamotte, D., Roca, E., Bracene, R., Faure, J.-L., Sassi, W., & Roure, F. (2005). Post-Cretaceous kinematics of the Atlas and Tell systems in central Algeria: Early foreland folding and subduction-related deformation. Comptes Rendus. Géoscience, 338(1–2), 115–125. https://doi.org/10.1016/j.crte.2005.11.005
Boughacha, M. S., Ouyed, M., Ayadi, A., & Benhallou, H. (2004). Seismicity and seismic hazard mapping of northern Algeria: Map of Maximum Calculated Intensities (MCI). Journal of Seismology, 8(1), 1–10. https://doi.org/10.1023/B:JOSE.0000009513.11031.43
Burton, P. W. (1979). Seismic risk in southern Europe through to India examined using Gumbel’s third distribution of extreme values. Geophysical Journal International, 59(2), 249–280. https://doi.org/10.1111/j.1365-246X.1979.tb06766.x
Cornell, C. A. (1969). A Probability-Based Structural Code. ACI Journal Proceedings, 66(12). https://doi.org/10.14359/7446
DeMets, C., Gordon, R. G., Argus, D. F., & Stein, S. (1990). Current plate motions. Geophysical Journal International, 101(2), 425–478. https://doi.org/10.1111/j.1365-246X.1990.tb06579.x
DeMets, C., Gordon, R. G., Argus, D. F., & Stein, S. (1994). Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophysical Research Letters, 21(20), 2191–2194. https://doi.org/10.1029/94GL02118
Ferreira, T. M., Mendes, N., & Silva, R. (2019). Multiscale Seismic Vulnerability Assessment and Retrofit of Existing Masonry Buildings. Buildings, 9(4), 91. https://doi.org/10.3390/buildings9040091
Frizon de Lamotte, D., Saint Bezar, B., Bracène, R., & Mercier, E. (2000). The two main steps of the Atlas building and geodynamics of the western Mediterranean. Tectonics, 19(4), 740–761. https://doi.org/10.1029/2000TC900003
Ganse, R. A. (1980). Expected-Intensity Searches and Attenuation Coefficients for China, Turkey and Yugoslavia. Seismological Research Letters, 51(2), 26–27. https://doi.org/10.1785/gssrl.51.2.26
Gelabert, B., Sàbat, F., & Rodríguez‐Perea, A. (2002). A new proposal for the late Cenozoic geodynamic evolution of the western Mediterranean. Terra Nova, 14(2), 93–100. https://doi.org/10.1046/j.1365-3121.2002.00392.x
Guemache, M. A. (2010). Évolution géodynamique des bassins sismogènes de l’Algérois (Algérie) : Approche pluridisciplinaire (méthodes géologiques et géophysiques. université de l’USTHB.
Gutenberg, B., & Richter, C. F. (1950). Seismicity of the Earth and associated phenomena. MAUSAM, 1(2), 174–176. https://doi.org/10.54302/mausam.v1i2.4568
Hadzima-Nyarko, M., Mišetić, V., & Morić, D. (2017). Seismic vulnerability assessment of an old historical masonry building in Osijek, Croatia, using Damage Index. Journal of Cultural Heritage, 28, 140–150. https://doi.org/10.1016/j.culher.2017.05.012
Hwang, H. H. M., & Huo, J.-R. (1994). Generation of hazard-consistent fragility curves. Soil Dynamics and Earthquake Engineering, 13(5), 345–354. https://doi.org/10.1016/0267-7261(94)90025-6
Jaiswal, K., Gupta, S., & Sinha, R. (2002). Estimation of maximum magnitude earthquakes in Peninsular India using extreme value statistics. 12th Symposium on Earthquake Engineering, IIT Roorkee; India, 313–323. https://www.researchgate.net/profile/Sushil-Gupta-14/publication/328277795_estimation_of_maximum_magnitude_earthquakes_in_peninsular_india_using_extreme_value_statistics/links/5bc38f11a6fdcc2c91fbec08/estimation-of-maximum-magnitude-earthquakes-in-peninsular-india-using-extreme-value-statistics.pdf
Leprêtre, A. (2012). Contraintes par imagerie sismique pénétrante sur l’évolution d’une marge Cénozoïque réactivée en compression (cas de la marge algérienne, secteur de Tipaza). Université de Bretagne occidentale - Brest.
Maury, R. C., Fourcade, S., Coulon, C., El Azzouzi, M., Bellon, H., Coutelle, A., Ouabadi, A., Semroud, B., Megartsi, M., Cotten, J., Belanteur, O., Louni-Hacini, A., Piqué, A., Capdevila, R., Hernandez, J., & Réhault, J.-P. (2000). Post-collisional Neogene magmatism of the Mediterranean Maghreb margin: a consequence of slab breakoff. Comptes Rendus de l’Académie Des Sciences - Series IIA - Earth and Planetary Science, 331(3), 159–173. https://doi.org/10.1016/S1251-8050(00)01406-3
Mohammadi, H., & Bayrak, Y. (2016). Regional Variations of the ω-upper Bound Magnitude of GIII Distribution in the Iranian Plateau. Acta Geophysica, 64(4), 1004–1033. https://doi.org/10.1515/acgeo-2016-0038
Peláez, J. A., Hamdache, M., & Casado, C. L. (2005). Updating the Probabilistic Seismic Hazard Values of Northern Algeria with the 21 May 2003 M 6.8 Algiers Earthquake Included. Pure and Applied Geophysics, 162(11), 2163–2177. https://doi.org/10.1007/s00024-005-2708-5
Sandi, H., & Borcia, I. S. (2011). Une raison suffisante pour redéfinir l’intensité sismique : éviter des erreurs dans l’estimation de l’aléa sismique. CONSTRUCŢII, 2(January 2011), 65–76.
Serpelloni, E., Vannucci, G., Pondrelli, S., Argnani, A., Casula, G., Anzidei, M., Baldi, P., & Gasperini, P. (2007). Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data. Geophysical Journal International, 169(3), 1180–1200. https://doi.org/10.1111/j.1365-246X.2007.03367.x
Shebalin, N. V. (1968). Methods of application of seismic engineering data for regional seismity. Regional Seismity in the USSR, Nauka Publ. House, Moscow, 95–111.
Slejko, D., Peruzza, L., & Rebez, A. (1998). Seismic hazard maps of Italy. Annali Di Geofisica, 41(2), 183–214.
Tsapanos, T. M., Bayrak, Y., Cinar, H., Koravos, G. C., Bayrak, E., Kalogirou, E. E., Tsapanou, A. V., & Vougiouka, G. E. (2014). Analysis of largest earthquakes in Turkey and its vicinity by application of the Gumbel III distribution. Acta Geophysica, 62(1), 59–82. https://doi.org/10.2478/s11600-013-0155-8
Yelles-Chaouche, A., Kherroubi, A., & Beldjoudi, H. (2017). The large Algerian earthquakes (267 A.D.-2017). Física de La Tierra, 29. https://doi.org/10.5209/FITE.57617
Views:
7
Downloads:
11
Copyright (c) 2024 Kamel Belkhiri, Abdelmalek Rerboudj, Nassim Bella
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.