MAPPING AND DETECTING LAND USE LAND COVER (LULC) CHANGES DYNAMICS OF PER-URBAN SPACES IN CONSTANTINE CONTEMPORARY STATES (NORTHEAST OF ALGERIA) A GEO-SPATIAL METHODS BY USING GIS, REMOTE SENSING, LCM AND GEE PLATFORM FROM 1984 TO 2020

  • Abdi Nidal Institute of Management and Urban Techniques – oum el bouaghie University, Algeria
  • Allaoua Boulehouache Faculty of Geography and Territory Development, University of Brothers Mentouri Constantine 1, Algeria
Keywords: RS, GEE, Mapping, Change, Dynamics, LCM, Per-Urban Space, Constantine

Abstract

Cities through his urbanizations strongly distort the land use to divergent spaces and casing a change in the natural land cover. This impact makes it necessary to provide municipalities with land use maps and information relating to their condition and dynamics. This study aims to map changes and effects of human activities in a Per-urban space area of Constantine contemporary states CCS ( North East of Algeria) .Within sixty tree years and experiment the suitability of Google earth Engine platform data’s and remote sensing techniques for lands protection as an effort to preserve it following urban planning.

For that reason, a multi temporal satellite Landsat 5TM (in 1984, 1991, 1998, 2005, 2012) and Landsat 8 OLI (in 2020) was investigated from 1984 to 2020 (5 periods) and a spatial resolution of 30 meters. a supervised classification with random forest algorithm with accuracy test by means of the confusion matrix and kappa index are applied. Moreover, local ground information allowed uncovering the dynamic of land-cover shape in the study area.

The results of LUCL class changes in Constantine states North East of Algeria Region from 1984 to 2020 indicates that the agricultural land in per-urban spaces has the potential to be urbanized. In addition, the water land, forests land and built up land classes are increasing respectively by +0.23%, +2.06% and +57.98% in the period study. Unlike, the agricultural land and bare land classes wich are experiencing a remarquable reduction respectively by -29.70% and -30.58% over the whole study area. Where the main causes are: the massive rural exodus; population growth, the increasing demand for constructive land and type of agriculture practiced by the population.These results could serve as a basis for defining priority intervention areas for the restoration of degraded areas and the management of agricultural and natural per urban spaces.

References

Abdi, N. (2023). Use of per-urban real estate between urban sprawl and agricultural exploitationin the metropolitan city Of Constantine (legal reforms and urban development policies).

Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.

BNEDER: Integrated rural development study of the wilaya of Constantine, phase 1, analysis and diagnosis. June 1989.

Cheruto, M. C., Kauti, M. K., Kisangau, D. P., & Kariuki, P. C. (2016). Assessment of land use and land cover change using GIS and remote sensing techniques: a case study of Makueni County, Kenya.

Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of environment, 113(5), 893-903.

Campbell, J. B., & Wynne, R. H. (2011). Introduction to remote sensing. Guilford press.

Côté, M. (2010). L'Archaïque terminal en Abitibi-Témiscamingue, le cas du site Réal. Archéologiques, (23).

Chen, C., Tang, J., Dong, W., Wang, C., Feng, Y., Wang, J., ... & Yu, J. (2007). A glimpse of streptococcal toxic shock syndrome from comparative genomics of S. suis 2 Chinese isolates. PloS one, 2(3), e315.

Foga, S., Scaramuzza, P. L., Guo, S., Zhu, Z., Dilley Jr, R. D., Beckmann, T., ... & Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote sensing of environment, 194, 379-390.

James, L. A. (2013). Legacy sediment: Definitions and processes of episodically produced anthropogenic sediment. Anthropocene, 2, 16-26.

Ju, J., & Roy, D. P. (2008). The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally. Remote Sensing of Environment, 112(3), 1196-1211.

Hansen, M. C., & Loveland, T. R. (2012). A review of large area monitoring of land cover change using Landsat data. Remote sensing of Environment, 122, 66-74.

Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction (Vol. 2, pp. 1-758). New York: springer.

Hietel, E., Waldhardt, R., & Otte, A. (2004). Analysing land-cover changes in relation to environmental variables in Hesse, Germany. Landscape ecology, 19, 473-489.

González Tovar, I., Boufi, S., Pèlach Serra, M. À., Alcalà Vilavella, M., Vilaseca Morera, F., & Mutjé Pujol, P. (2012). Nanofibrillated cellulose as paper additive in eucalyptus pulps. © BioResources, 2012, vol. 7, núm. 4, p. 5167-5180.

Goodwin, M. H., & Cekaite, A. (2013). Calibration in directive/response sequences in family interaction. Journal of Pragmatics, 46(1), 122-138.

Kennedy, D. (2009). A Critique of Adjudication [fin de Si cle]. Harvard University Press.

Lambin, E. F., Geist, H. J., & Lepers, E. (2003). Dynamics of land-use and land-cover change in tropical regions. Annual review of environment and resources, 28(1), 205-241.

Lambi, J. N., Nsehyuka, A. T., Egbewatt, N., Cafferata, L. F., & Arvia, A. J. (2003). Synthesis, spectral properties and thermal behaviour of zinc (II) acetylsalicylate. Thermochimica acta, 398(1-2), 145-151.

Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news, 2(3), 18-22.

Moquet, A. (2003). Apports de la télédétection pour la cartographie d’habitats terrestres en zones humides méditerranéennes. Mémoire de fin d’étude ENSAIA Nancy, 51p.

Masese, L., Baeten, J. M., Richardson, B. A., Bukusi, E., John-Stewart, G., Graham, S. M., ... & McClelland, R. S. (2015). Changes in the contribution of genital tract infections to HIV acquisition among Kenyan highrisk women from 1993 to 2012. Aids, 29(9), 1077-1085.

Niang, A. J. (2014). La résilience aux changements climatiques: cas de la ville de Nouakchott. Geo-Eco-Trop, 38(1), 155-168.

Ofori, I. K., & Asongu, S. A. (2021). ICT diffusion, foreign direct investment and inclusive growth in Sub-Saharan Africa. Telematics and Informatics, 65, 101718.

Stow, D. A., Hope, A., McGuire, D., Verbyla, D., Gamon, J., Huemmrich, F& Myneni, R. (2004). Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote sensing of environment, 89(3), 281-308.

Sala, O. E., & Austin, A. T. (2000). Methods of estimating aboveground net primary productivity. In Methods in ecosystem science (pp. 31-43). New York, NY: Springer New York.

Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., ... & Tilman, D. G. (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological applications, 7(3), 737-750.

Zamani, A., Maini, B., & Pereira‐Almao, P. (2012). Flow of Nano dispersed catalyst particles through porous media: Effect of permeability and temperature. The Canadian Journal of Chemical Engineering, 90(2), 304-314.

Views:

63

Downloads:

55

Published
2024-06-29
Citations
How to Cite
Abdi Nidal, & Allaoua Boulehouache. (2024). MAPPING AND DETECTING LAND USE LAND COVER (LULC) CHANGES DYNAMICS OF PER-URBAN SPACES IN CONSTANTINE CONTEMPORARY STATES (NORTHEAST OF ALGERIA) A GEO-SPATIAL METHODS BY USING GIS, REMOTE SENSING, LCM AND GEE PLATFORM FROM 1984 TO 2020. International Journal of Innovative Technologies in Social Science, (2(42). https://doi.org/10.31435/rsglobal_ijitss/30062024/8198