MECHANISMS OF THE INFLUENCE OF SODIUM-GLUCOSE COTRANSPORTER-2 INHIBITORS ON LDL RECEPTOR FUNCTION AND CARDIOVASCULAR RISK IN TYPE 2 DM (literature review)
Abstract
In the modern world, the prevalence of dysmetabolic conditions, which are accompanied by corruption of lipid metabolism and the distribution of adipose tissue in the body, is increasing, and their consequences include cardiovascular diseases, type 2 diabetes mellitus (T2DM) etc. These pathologies are characterized by dyslipidemia, which reflects an imbalance in the processes of assimilation, transportation, absorption and use by fatty acids’ cells as energy and plastic substrates. A decrease in the relative content of unsaturated fatty acids in low-density lipoproteins (LDL) causes dysfunction of cell membranes, and an increase in serum concentration of LDL means corruption of their absorption by cells, which contributes to the development of atherosclerosis. Absorption of LDL by cells occurs through the interaction of apolipoprotein apoE/B-100 with the membrane receptor of LDL. The cell regulates the supply of lipids and cholesterol by synthesizing these receptors. The expression of LDL receptors is regulated at the level of transcription; particularly, it is stimulated by insulin and suppressed by excess cholesterol, the latter leading to abnormal accumulation of lipids in cells and tissues and the development of pathology in various organs. According to clinical and experimental studies and meta-analyses, drugs from the group of inhibitors of sodium-dependent glucose cotransporter-2 (SGLT2) have a pronounced protective cardiorenal effect in patients with T2DM and in cases of kidney and heart dysfunction. These beneficial effects are associated with improving insulin sensitivity, increasing the level of antiatherogenic HDL cholesterol, reducing the accumulation of lipids in visceral fat, stimulating lipolysis, and switching of oxidation towards the preferential use of lipid substrates. The paradoxical increase in LDL cholesterol is mainly due to less atherogenic large floating particles, and the negative effect is apparently counterweight by the wide range of beneficial pleiotropic effects of gliflozins.
References
Barreto, J., Karathanasis, S. K., Remaley, A., & Sposito, A. C. (2021). Role of LOX-1 (Lectin-Like Oxidized Low-Density Lipoprotein Receptor 1) as a Cardiovascular Risk Predictor: Mechanistic Insight and Potential Clinical Use. Arteriosclerosis, thrombosis, and vascular biology, 41(1), 153–166. https://doi.org/10.1161/ATVBAHA.120.315421
Basu, D., Huggins, L. A., Scerbo, D., Obunike, J., Mullick, A. E., Rothenberg, P. L., Di Prospero, N. A., Eckel, R. H., & Goldberg, I. J. (2018). Mechanism of increased LDL (Low-Density Lipoprotein) and decreased triglycerides with SGLT2 (Sodium-Glucose Cotransporter 2) inhibition. Arteriosclerosis, thrombosis, and vascular biology, 38(9), 2207-16. https://doi.org/10.1161/ATVBAHA.118.311339
Bennett, J., Stevens, G., Mathers, C. D. & Bonita, R. (2018) NCD Countdown 2030: worldwide trends in non-communicable disease mortality and progress towards sustainable development goal target 3.4. The Lancet. 392(10152), 1072-1088. doi: 10.1016/S0140-6736(18)31992-5
Briand, F., Mayoux, E., Brousseau, E., Burr, N., Urbain, I., Costard, C., Mark, M., & Sulpice, T. (2016). Empagliflozin, via switching metabolism toward lipid utilization, moderately increases LDL cholesterol levels through reduced LDL catabolism. Diabetes, 65(7), 2032–2038. https://doi.org/10.2337/db16-0049
Brunton S. A. (2015). The potential role of sodium glucose co-transporter 2 inhibitors in the early treatment of type 2 diabetes mellitus. International journal of clinical practice, 69(10), 1071–1087. https://doi.org/10.1111/ijcp.12675
Cai, T., Gao, Y., Zhang, L., Yang, T., & Chen, Q. (2020). Effects of different dosages of Sodium-Glucose Transporter 2 Inhibitors on lipid levels in patients with type 2 diabetes mellitus: A protocol for systematic review and meta-analysis. Medicine, 99(29), e20735. https://doi.org/10.1097/MD.0000000000020735
Cha, S. A., Park, Y. M., Yun, J. S., Lim, T. S., Song, K. H., Yoo, K. D., Ahn, Y. B., & Ko, S. H. (2017). A comparison of effects of DPP-4 inhibitor and SGLT2 inhibitor on lipid profile in patients with type 2 diabetes. Lipids in health and disease, 16(1), 58. https://doi.org/10.1186/s12944-017-0443-4
Chen, Y., Hamidu, S., Yang, X., Yan, Y., Wang, Q., Li, L., Oduro, P. K., & Li, Y. (2022). Dietary supplements and natural products: an update on their clinical effectiveness and molecular mechanisms of action during accelerated biological aging. Frontiers in genetics, 13, 880421. https://doi.org/10.3389/fgene.2022.880421
Dar, S., Siddiqi, A. K., Alabduladhem, T. O., Rashid, A. M., Sarfraz, S., Maniya, T., Menezes, R. G., & Almas, T. (2022). Effects of novel glucose-lowering drugs on the lipid parameters: A systematic review and meta-analysis. Annals of medicine and surgery, 2012, 77, 103633. https://doi.org/10.1016/j.amsu.2022.103633
de Mortanges P. A., Salvador, D., Jr, Laimer, M., Muka, T., Wilhelm, M., & Bano, A. (2021). The role of SGLT2 Inhibitors in atherosclerosis: a narrative mini-review. Frontiers in pharmacology, 12, 751214. https://doi.org/10.3389/fphar.2021.751214
Fadini, G. P., Bonora, B. M., Zatti, G., Vitturi, N., Iori, E., Marescotti, M. C., Albiero, M., & Avogaro, A. (2017). Effects of the SGLT2 inhibitor dapagliflozin on HDL cholesterol, particle size, and cholesterol efflux capacity in patients with type 2 diabetes: a randomized placebo-controlled trial. Cardiovascular diabetology, 16(1), 42. https://doi.org/10.1186/s12933-017-0529-3
Faraj M. (2020). LDL, LDL receptors, and PCSK9 as modulators of the risk for type 2 diabetes: a focus on white adipose tissue. Journal of biomedical research, 34(4), 251-259. https://doi.org/10.7555/JBR.34.20190124
Gent, J., & Braakman, I. (2004). Low-density lipoprotein receptor structure and folding. Cellular and molecular life sciences: CMLS, 61(19-20), 2461–2470. https://doi.org/10.1007/s00018-004-4090-3
Hayashi, T., Fukui, T., Nakanishi, N., Yamamoto, S., Tomoyasu, M., Osamura, A., Ohara, M., Yamamoto, T., Ito, Y., & Hirano, T. (2017). Dapagliflozin decreases small dense low-density lipoprotein-cholesterol and increases high-density lipoprotein 2-cholesterol in patients with type 2 diabetes: comparison with sitagliptin. Cardiovascular diabetology, 16(1), 8. https://doi.org/10.1186/s12933-016-0491-5
Itoh, H., Tanaka, M. "Greedy Organs Hypothesis" for sugar and salt in the pathophysiology of non-communicable diseases in relation to sodium-glucose co-transporters in the intestines and the kidney. Metabolism Open. 2022, 13,100169. doi: 10.1016/j.metop.2022.100169
Jiang, A., Feng, Z., Yuan, L., Zhang, Y., Li, Q & She Y. (2021) Effect of sodium–glucose co-transporter-2 inhibitors on the levels of serum asprosin in patients with newly diagnosed type 2 diabetes mellitus. Diabetology & Metabolic Syndrome, 13, 34. https://doi.org/10.1186/s13098-021-00652-5
Jojima, T., Sakurai, S., Wakamatsu, S., Iijima, T., Saito, M., Tomaru, T., Kogai, T., Usui, I., & Aso, Y. (2021). Empagliflozin increases plasma levels of campesterol, a marker of cholesterol absorption, in patients with type 2 diabetes: Association with a slight increase in high-density lipoprotein cholesterol. International journal of cardiology, 331, 243–248. https://doi.org/10.1016/j.ijcard.2021.01.063
Kersten S. (2021). Role and mechanism of the action of angiopoietin-like protein ANGPTL4 in plasma lipid metabolism. Journal of lipid research, 62, 100150. https://doi.org/10.1016/j.jlr.2021.100150
Lazarte, J., Kanagalingam, T., & Hegele, R. A. (2021). Lipid effects of sodium-glucose cotransporter 2 inhibitors. Current opinion in lipidology, 32(3), 183–190. https://doi.org/10.1097/MOL.0000000000000751
Leren T. P. (2014). Sorting an LDL receptor with bound PCSK9 to intracellular degradation. Atherosclerosis, 237(1), 76–81. https://doi.org/10.1016/j.atherosclerosis.2014.08.038
Ljungberg, J., Holmgren, A., Bergdahl, I. A., Hultdin, J., Norberg, M., Näslund, U., Johansson, B., & Söderberg, S. (2017). Lipoprotein(a) and the Apolipoprotein B/A1 ratio independently associate with surgery for aortic stenosis only in patients with concomitant coronary artery disease. Journal of the American Heart Association, 6(12), e007160. https://doi.org/10.1161/JAHA.117.007160; 6:e00
Mach, F., Baigent, C., Catapano, A. L, Koskinas K., C, Casula, M., Badimon L, Chapman J., De Backer, G., Delgado V. & Ference B. A. (2020). 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). European Heart Journal, 41(1), 111–188. https://doi.org/10.1093/eurheartj/ehz455
Martinez, R., Lloyd-Sherlock, P., Soliz, P., Ebrahim, S., Vega, E., Ordunez, P., & McKee, M. (2020). Trends in premature avertable mortality from non-communicable diseases for 195 countries and territories, 1990-2017: a population-based study. The Lancet. Global health, 8(4), e511–e523. https://doi.org/10.1016/S2214-109X(20)30035-8
Mazhar, F., & Haider, N. (2016). Proprotein convertase subtilisin/kexin type 9 enzyme inhibitors: An emerging new therapeutic option for the treatment of dyslipidemia. Journal of pharmacology & pharmacotherapeutics, 7(4), 190–193. https://doi.org/10.4103/0976-500X.195906
Mega, J. L., Stitziel, N. O., Smith, J. G., Chasman, D. I., Caulfield, M., Devlin, J. J., Nordio, F., Hyde, C., Cannon, C. P., Sacks, F., Poulter, N., Sever, P., Ridker, P. M., Braunwald, E., Melander, O., Kathiresan, S., & Sabatine, M. S. (2015). Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. Lancet (London, England), 385(9984), 2264–2271. https://doi.org/10.1016/S0140-6736(14)61730-X
Mironov, A. A. & Beznoussenko, G. V. Opinion: On the way towards the new paradigm of atherosclerosis (2022). International Journal of Molecular Sciences., 23(4), 2152; https://doi.org/10.3390/ijms23042152
Mortensen, M. B., & Nordestgaard, B. G. (2020). Elevated LDL cholesterol and increased risk of myocardial infarction and atherosclerotic cardiovascular disease in individuals aged 70-100 years: a contemporary primary prevention cohort. Lancet (London, England), 396(10263), 1644–1652. https://doi.org/10.1016/S0140-6736(20)32233-9
Neal, B., Perkovic, V., & Matthews, D. R. (2017). Canagliflozin and Cardiovascular and Renal Events in Type 2 diabetes. The New England journal of medicine, 377(21), 2099. https://doi.org/10.1056/NEJMc1712572
Nicholls M. (2019) Michael S. Brown and Joseph L. Goldstein were jointly awarded the Nobel Prize in Physiology or Medicine 1985 ‘for their discoveries concerning the regulation of cholesterol metabolism’. European Heart Journal, 40(42), 3447-49. https://doi.org/10.1093/eurheartj/ehz723
Ptaszynska, A., Hardy, E., Johnsson, E., Parikh, S., & List, J. (2013). Effects of dapagliflozin on cardiovascular risk factors. Postgraduate medicine, 125(3), 181–189. https://doi.org/10.3810/pgm.2013.05.2667
Ramakrishnan, G., Arjuman, A., Suneja, S., Das, C., Chandra, N. (2012) The association between insulin and low-density lipoprotein receptors. Diabetes & Vascular Disease Research 9(3),196-204. DOI:10.1177/1479164111430243
Rau, M., Thiele, K., Korbinian Hartmann, N. U., Möllmann, J., Wied, S., Böhm, M., Scharnagl, H., März, W., Marx, N., & Lehrke, M. (2021). Effects of empagliflozin on lipoprotein subfractions in patients with type 2 diabetes: data from a randomized, placebo-controlled study. Atherosclerosis, 330, 8-13. https://doi.org/10.1016/j.atherosclerosis.2021.06.915
Rader, D. J. Effect of insulin resistance, dyslipidemia, and intra-abdominal adiposity on the development of cardiovascular disease and diabetes mellitus. The American journal of medicine, 120(3, Suppl 1), S12–S18. https://doi.org/10.1016/j.amjmed.2007.01.003
Sniderman, A. D., Lamarche, B., Contois, J. H., & de Graaf, J. (2014). Discordance analysis and the gordian knot of LDL and non-HDL cholesterol versus apoB. Current opinion in lipidology, 25(6), 461–467. https://doi.org/10.1097/MOL.0000000000000127
Szekeres, Z., Toth, K., & Szabados, E. (2021). The Effects of SGLT2 Inhibitors on lipid metabolism. Metabolites, 11(2), 87. https://doi.org/10.3390/metabo11020087
Titov, V. N., Shirinsky, V. P. (2016) Insulin resistance: the conflict between biological settings of energy metabolism and human lifestyle (a glance at the problem from evolutionary viewpoint). Diabetes mellitus, 9(4), 286-294. (In Russ.). DOI:10.14341/7959
Wanner, C., Inzucchi, S. E., Lachin, J. M., Fitchett, D., von Eynatten, M., Mattheus, M., Johansen, O. E., Woerle, H. J., Broedl, U. C., Zinman, B., & EMPA-REG OUTCOME Investigators (2016). Empagliflozin and progression of kidney disease in type 2 diabetes. The New England journal of medicine, 375(4), 323-334. https://doi.org/10.1056/NEJMoa1515920
Yadav, K., Sharma, M., & Ferdinand, K. C. (2016). Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors: Present perspectives and future horizons. Nutrition, metabolism, and cardiovascular diseases: NMCD, 26(10), 853-862. https://doi.org/10.1016/j.numecd.2016.05.006
Zheng, K. H., Arsenault, B. J., Kaiser, Y., Khaw, K. T., Wareham, N. J., Stroes, E., & Boekholdt, S. M. (2019). ApoB/apoA-I Ratio and Lp(a) associations with aortic valve stenosis incidence: insights from the EPIC-Norfolk prospective population study. Journal of the American Heart Association, 8(16), e013020. https://doi.org/10.1161/JAHA.119.013020
Zheng, K. H., Tsimikas, S., Pawade, T., Kroon, J., Jenkins, W., Doris, M. K., White, A. C., Timmers, N., Hjortnaes, J., Rogers, M. A., Aikawa, E., Arsenault, B. J., Witztum, J. L., Newby, D. E., Koschinsky, M. L., Fayad, Z. A., Stroes, E., Boekholdt, S. M., & Dweck, M. R. (2019). Lipoprotein(a) and oxidized phospholipids promote valve calcification in patients with aortic stenosis. Journal of the American College of Cardiology, 73(17), 2150-2162. https://doi.org/10.1016/j.jacc.2019.01.070
Zinman, B., Wanner, C., Lachin, J. M., Fitchett, D., Bluhmki, E., Hantel, S., Mattheus, M., Devins, T., Johansen, O. E., Woerle, H. J., Broedl, U. C., Inzucchi, S. E., & EMPA-REG OUTCOME Investigators (2015). Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. The New England journal of medicine, 373(22), 2117-2128. https://doi.org/10.1056/NEJMoa1504720
Views:
204
Downloads:
121
Copyright (c) 2022 Nataliia Kushnarova, Olesia Zinych, Alla Kovalchuk, Olha Prybyla, Kateryna Shyshkan-Shyshova
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.