• Kovalchuk A. V. к.мед.н., ДУ «Інститут ендокринології та обміну речовин ім. В.П. Комісаренка НАМН України», м. Київ, Україна, https://orcid.org/0000-0001-6591-1460
  • Zinich O. V. д.мед.н., ДУ «Інститут ендокринології та обміну речовин ім. В.П. Комісаренка НАМН України», м. Київ, Україна https://orcid.org/0000-0002-0516-0148
  • Prybyla O. V. ДУ «Інститут ендокринології та обміну речовин ім. В.П. Комісаренка НАМН України», м. Київ, Україна https://orcid.org/0000-0003-2212-1172
  • Kushnareva N. M. к.мед.н., ДУ «Інститут ендокринології та обміну речовин ім. В.П. Комісаренка НАМН України», м. Київ, Україна https://orcid.org/0000-0002-5390-6784
  • Kovalchuk V. M. к.мед.н., Національний університет охорони здоров’я України ім. П.Л. Шупика, м. Київ, Україна https://orcid.org/0000-0003-2363-7365
  • Shyshkan-Shyshova K. O. ДУ «Інститут ендокринології та обміну речовин ім. В.П. Комісаренка НАМН України», м. Київ, Україна https://orcid.org/0000-0003-0939-5902
Keywords: type 2 diabetes mellitus, osteocalcin, aGLP-1, SGLT2 inhibitors, obesity


Background. Current data suggest that bone tissue produces hormonally active factors - modulators of metabolic processes throughout the body. The most significant osteoproteins is osteocalcin, the non-collagen structural protein of the bone matrix, which is synthesized by osteoblasts and enters the bloodstream during the resorption of bone tissue. Osteocalcin is involved in the regulation of energy balance, insulin secretion, peripheric insulin sensitivity, and adipocyte’s function, while being an important marker of bone remodeling. The aim of this study was to investigate the relationship between osteocalcin levels and metabolic parameters in 97 patients with type 2 diabetes over 50 years of age, in the course of pharmacotherapy using different classes of antidiabetic drugs, namely human insulin, glucagon-like peptide-1 agonists (aGLP), and sodium-glucose co-transporter 2 (SGLT2) inhibitors, depending on presence of obesity. Results. There was found the highest serum osteocalcin level in patients without obese who received a metabolically active therapy with insulin or aGLP-1, comparing to nonobese subjects of SGLT2 inhibitors therapy group. The lowest level of HbA1c and triglycerides observed in non-obese patients on the background of taking aGLP-1. Conclusion. It can be assumed that the factor determining the hypoglycemic efficacy of investigated drugs may be the pathogenesis of type 2 diabetes which depends on the degree of obesity, while the type of antidiabetic therapy has a corrective effect, probably mediated by changes in body weight and fat distribution.


Zhou, R., Guo, Q., Xiao, Y., Qi Guo, Huang, Y., Li, Ch, & Luo, X. (2021). Endocrine role of bone in the regulation of energy metabolism. Bone Research, 9, 25. doi: 10.1038/s41413-021-00142-4

Riddle R.C., & Clemens T.L. (2017). Bone cell bioenergetics and skeletal energy homeostasis. Physiological Reviews, 97, 667–698. doi: 10.1152/physrev.00022.2016

Abarrategi, A., Mian, S., Passaro, D., Rouault-Pierre, K., Grey, W., & Bonnet, D. (2018). Modeling the human bone marrow niche in mice: from host bone marrow engraftment to bioengineering approaches. Journal of Experimental Medicine, 215, 729-743. doi: 10.1084/jem.20172139

Cipriani, C., Colangelo, L., Santori, R., Renella, M., Mastrantonio, M., Minisola, S., & Pepe, J. (2020). The interplay between bone and glucose. Front Endocrinol (Lausanne), 24 March. https://doi.org/10.3389/fendo.2020.00122.

Erben, R.G. (2018). Physiological Actions of Fibroblast Growth Factor-23. Front Endocrinol (Lausanne), 28 May | https://doi.org/10.3389/fendo.2018.00267.

Cai, X., Xing, J., Long, C., Peng, Q., & Humphrey, M. (2017). DOK3 modulates bone remodeling by negatively regulating osteoclastogenesis and positively regulating osteoblastogenesis. Journal of Bone and Mineral Research, 32, 2207-2218. doi: 10.1002/jbmr.3205.

Matsuoka, K., Park, K., Ito, M., Ikeda, K., & Takeshita, S. (2014). Osteoclast -derived complement component 3a stimulates osteoblast differentiation. Journal of Bone and Mineral Research, 29, 1522-1530. doi: 10.1002/jbmr.2187.

Zhang, H., Wang, L., Liu, Sh., Li, J., Xiao, L., & Yang, G. (2019). Adiponectin regulates bone mass in AIS osteopenia via RANKL/OPG and IL6 pathway. Journal of Translational Medicine, 17, 64. doi.org/10.1186/s12967-019-1805-7

Lecka-Czernik, B. Diabetes, bone and glucose-lowering agents: basic biology. (2017). Diabetologia, 60 (7), 1163-1169. doi: 10.1007/s00125-017-4269-4.

Seppä S., Tenhola, S., & Voutilainen, R. (2019). Association of serum total osteocalcin concentrations with endogenous glucocorticoids and insulin sensitivity markers in 12-year-old children: a cross-sectional study. Front Endocrinol (Lausanne), 19 Nov | doi.org/10.3389/fendo.2019.00798

Donat, A., Knapstein, P.-R., Jiang, S., Baranowsky, A., Ballhause, T.-M., Frosch K.-H., & Keller, J. (2021). Glucose metabolism in osteoblasts in healthy and pathophysiological conditions. International Journal of Molecular Sciences, 22 (8), 4120. doi: 10.3390/ijms22084120

Wei, J., & Karsenty, G. An overview of the metabolic functions of osteocalcin. (2015). Reviews in Endocrine and Metabolic Disorders, 16, 93–98. doi: 10.1007/s11154-014-9307-7.

Lin, X., Onda, D.-A., Yang, C.-H., Lewis, J. R., Levinger, I., & Loh, K. (2020). Roles of bone-derived hormones in type 2 diabetes and cardiovascular pathophysiology. Molecular Metabolism, 40, 101040. doi: 10.1016/j.molmet.2020.101040.

Rubert, M., & De la Piedra, C. (2020). Osteocalcin: from marker of bone formation to hormone; and bone, an endocrine organ. Journal of Osteoporosis and Mineral Metabolism, 12 (4), 146-151. DOI: 10.4321/S1889-836X2020000400007

Yeap, B. B., Alfonso, H., Chubb, S. A., Gauci, R., Byrnes, E., Beilby, J. P., … & Flicker, L. (2015). Yeap, B.B., Alfonso, H., Chubb, S.A, et al. Higher serum undercarboxylated osteocalcin and other bone turnover markers are associated with reduced diabetes risk and lower estradiol concentrations in older men. Journal of Clinical Endocrinology & Metabolism, 100, 63–71. doi: 10.1210/jc.2014-3019

Kheniser, K.G., Polanco, S., Kashyap, S.R. (2018) The effects of diabetes therapy on bone: a clinical perspective. Journal of Diabetes Complications, 32, 713–719. doi: 10.1016/j.jdiacomp.2018.04.005

Liu, Y., Liu, X., Lewis, J., &. (2019). Relationship between serum osteocalcin / undercarboxylated osteocalcin and type 2 diabetes: a systematic review /meta-analysis study protocol. BMJ Open; London, 9 (3). http://creativecommons.org/licenses/by-nc/4.0/.

Vianna, A., Sanches, C., & Barreto, F. (2017). Review article: effects of type 2 diabetes therapies on bone metabolism. Diabetology & Metabolic Syndrome, 9, 75. doi: 10.1186/s13098-017-0274-5

Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2020. (2020). American Diabetes Association. Diabetes Care, 43 (1), S98-S110. https://doi.org/10.2337/dc20-S009

Rena, G., Hardie, D.G., & Pearson, E.R. The mechanisms of action of metformin. (2017). Diabetologia, 60 (9), 1577-1585. doi: 10.1007/s00125-017-4342-z

McCarthy, A.D., Cortizo, A.M., & Sedlinsky, C. (2016). Metformin revisited: Does this regulator of AMPactivated protein kinase secondarily affect bone metabolism and prevent diabetic osteopathy. World Journal of Diabetes, 7 (6), 122-133. doi: 10.4239/wjd.v7.i6.122

Jiating, L., Buyun, J., & Yinchang, Z. (2019). Role of metformin on osteoblast differentiation in type 2 diabetes. BioMed Research International, 2019, 9203934. doi: 10.1155/2019/9203934

Stage, T. B., Christensen, M. H., Jørgensen, N. R., Beck-Nielsen, H., Brøsen, K., Gram, J., & Frost, M. (2018). Effects of metformin, rosiglitazone and insulin on bone metabolism in patients with type 2 diabetes. Bone, 112, 35–41. https://doi.org/10.1016/j.bone.2018.04.004

Ma, J., Zhang, Z., Hu, X., Wang, X., & Chen, A. (2018). Metformin promotes differentiation of human bone marrow derived mesenchymal stem cells into osteoblast via GSK3β inhibition. European review for medical and pharmacological sciences, 22 (22), 7962–7968. DOI: 10.26355/eurrev_201811_16424

Wang, P., Ma, T., Guo, D., Hu, K., Shu, Y., Xu, H., & Schneider, A. (2018). Metformin induces osteoblastic differentiation of human induced pluripotent stem cell-derived mesenchymal stem cells. Journal of tissue engineering and regenerative medicine, 12(2), 437–446. https://doi.org/10.1002/term.2470

Losada, E., Soldevila, B., Ali, M. S., Martínez-Laguna, D., Nogués, X., Puig-Domingo, M., Díez-Pérez, A., Mauricio, D., & Prieto-Alhambra, D. (2018). Real-world antidiabetic drug use and fracture risk in 12,277 patients with type 2 diabetes mellitus: a nested case-control study. Osteoporosis international, 29(9), 2079–


Röder, P., Wu, B., Liu, Y., & Han, W. (2016). Pancreatic regulation of glucose homeostasis. Experimental & Molecular Medicine, 48, e219. https://doi.org/10.1038/emm.2016.6

Htike, Z. Z., Zaccardi, F., Papamargaritis, D., Webb, D. R., Khunti, K., & Davies, M. J. (2017). Efficacy and safety of glucagon-like peptide-1 receptor agonists in type 2 diabetes: A systematic review and mixed-treatment comparison analysis. Diabetes, obesity & metabolism, 19(4), 524–536. https://doi.org/10.1111/dom.12849

Schiellerup, S.P., Skov-Jeppesen, K., Windeløv, J.A, Svane, M. S, Holst, J. J., Hartmann, B., & Rosenkilde, M. (2019). Gut hormones and their effect on bone metabolism. potential drug therapies in future osteoporosis treatment. Frontiers in Endocrinology, 10,75. https://doi.org/10.3389/fendo.2019.00075

Oh, D.Y., & Olefsky, J.M. (2016). G protein-coupled receptors as targets for anti-diabetic therapeutics. Nat. Rev. Drug. Discov., 15, 161–172. DOI: 10.1038/nrd.2015.4

Luo, G., Liu, H., & Lu, H. (2016). Glucagon-like peptide-1(GLP-1) receptor agonists: potential to reduce fracture risk in diabetic patients? British journal of clinical pharmacology, 81 (1), 78–88. DOI: 10.1111/bcp.12777

Lu, N., Sun, H., Yu, J., Wang, X., Liu, D., Zhao, L., … & Liu, J. (2015). Glucagon-like peptide-1 receptor agonist Liraglutide has anabolic bone effects in ovariectomized rats without diabetes. PloS one, 10(7), e0132744. https://doi.org/10.1371/journal.pone.0132744

Mabilleau, G., Mieczkowska, A., & Chappard, D. (2014). Use of glucagon-like peptide-1 receptor agonists and bone fractures: a meta-analysis of randomized clinical trials. Journal of Diabetes, 6, 260–266. doi: 10.1111/1753-0407.12102.

Su, B., Sheng, H., Zhang, M., Bu, L., Yang, P., Li, … & Wang, J. (2015). Risk of bone fractures associated with glucagon-like peptide-1 receptor agonists' treatment: a meta-analysis of randomized controlled trials. Endocrine, 48(1), 107–115. https://doi.org/10.1007/s12020-014-0361-4

Mannucci, E., & Monami, M. (2017). Bone fractures with sodium-glucose co-transporter-2 inhibitors: how real is the risk? Drug Safety, 40 (2), 115–119. doi: 10.1007/s40264-016-0470-5.

Blau, J.E., & Taylor, S.I. (2018). Adverse effects of SGLT2 inhibitors on bone health. Nature reviews. Nephrology, 14 (8), 473-474. doi: 10.1038/s41581-018-0028-0.

Kohan, D.E., Fioretto, P., Tang, W., & List, J.F. (2014). Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney international, 85(4), 962–971. https://doi.org/10.1038/ki.2013.356

Toulis, K. A., Bilezikian, J. P., Thomas, G. N., Hanif, W., Kotsa, K., Thayakaran, R., … & Nirantharakumar, K. (2018). Initiation of dapagliflozin and treatment-emergent fractures. Diabetes, obesity & metabolism, 20(4), 1070–1074. https://doi.org/10.1111/dom.13176

Neal, B., Perkovic, V., Mahaffey, K.W., de Zeeuw, D., Fulcher, G., Erondu, N., … & Matthews, D. R. (2017). Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med.., 377, 644-657. DOI: 10.1056/NEJMoa1611925

Kohler, S., Kaspers, S., Salsali, A., Zeller, C., & Woerle, H.J. (2018). Analysis of fractures in patients with type 2 diabetes treated with empagliflozin in pooled data from placebo-controlled trials and a head-to-head study versus glimepiride. Diabetes Care, 41 (8), 1809-1816. doi: 10.2337/dc17-1525.

Watts, N. B., Bilezikian, J. P., Usiskin, K., Edwards, R., Desai, M., Law, G., & Meininger, G. (2016). Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus. The Journal of clinical endocrinology and metabolism, 101(1), 157–166. https://doi.org/10.1210/jc.2015-3167

Ruanpeng, D., Ungprasert, P., Sangtian, J., & Harindhanavudhi, T. (2017). Sodium-glucose cotransporter 2 (SGLT2) inhibitors and fracture risk in patients with type 2 diabetes mellitus: A meta-analysis. Diabetes/Metabolism Research and Reviews, 33 (6). doi: 10.1002/dmrr.2903

Meier, C., Schwartz, A.V., Egger, A., & Lecka-Czernik, B. (2016). Effects of diabetes drugs on the skeleton. Bone, 82, 93–100. doi: 10.1016/j.bone.2015.04.026

Xi, G., Rosen, C.J., & Clemmons, D.R. (2016). IGF-I and IGFBP-2 stimulate AMPK activation and autophagy, which are required for osteoblast differentiation. Endocrinology, 157 (1), 268-281. doi: 10.1210/en.2015-1690

Bortolin, R.H., Neto, Arcaro, C.A., F.P., Bezerra, J. F., da Silva, F. S., Ururahy, M. A., & de Rezende, A. A. (2017). Anabolic Effect of Insulin Therapy on the Bone: Osteoprotegerin and Osteocalcin Up-Regulation in Streptozotocin-Induced Diabetic Rats. Basic & clinical pharmacology & toxicology, 120, 227–234. doi:


Cooper, I., Brookler, K., & Crofts, C. (2021). Rethinking fragility fractures in type 2 diabetes: the link between hyperinsulinaemia and osteofragilitas. Biomedicines, 9(9), 1165. https://doi.org/10.3390/biomedicines9091165

Rathinavelu, S., Guidry-Elizondo, H, & Banu, J. (2018). Molecular Modulation of Osteoblasts and Osteoclasts in Type 2 Diabetes. Journal of diabetes research, 2018, 6354787. DOI: 10.1155/2018/6354787

Gonzalez-Garcia, Z.M., Kullo, I.J., Coletta, D.K., Mandarino, L.J., & Shaibi, G.Q. (2015). Osteocalcin and type 2 diabetes risk in Latinos: a life course approach. American journal of human biology, 27, 859–861. https://doi.org/10.1002/ajhb.22745

Kunutsor, S.K., Apekey, T.A., & Laukkanen, J.A. (2015). Association of serum total osteocalcin with type 2 diabetes and intermediate metabolic phenotypes: systematic review and meta-analysis of observational evidence. European journal of epidemiology, 30, 599–614. doi: 10.1007/s10654-015-0058-x.

Kheniser, K.G., Polanco, C.M, Kashyap, S.R., Henry, R. M., van Onzenoort, H., Schram, M.T., … & van den Bergh J.P. (2018). The effects of diabetes therapy on bone: A clinical perspective. Journal of diabetes and its complications, 32(7), 713–719. https://doi.org/10.1016/j.jdiacomp.2018.04.005

de Waard, E., Driessen, J., de Jong, J., &. (2017). The association between insulin use and volumetric bone mineral density, bone micro-architecture and bone strength of the distal radius in patients with type 2 diabetes - The Maastricht study. Bone, 101, 156-161. doi: 10.1016/j.bone.2017.05.004

Bilotta, F.L., Arcidiacono, B., Messineo, S., &. (2018). Insulin and osteocalcin: further evidence for a mutual cross-talk. Endocrine, 59 (3), 622-632. doi: 10.1007/s12020-017-1396-0

Guja, C., Guja, L., & Miulescu, R. D. (2019). Effect of type 2 diabetes medications on fracture risk. Annals of translational medicine, 7(20), 580. https://doi.org/10.21037/atm.2019.09.51





How to Cite
Kovalchuk A. V., Zinich O. V., Prybyla O. V., Kushnareva N. M., Kovalchuk V. M., & Shyshkan-Shyshova K. O. (2022). OSTEOCALCIN ROLE IN THE REGULATION OF INSULIN SECRETION AND OSTEOTROPIC EFFECTS OF DIFFERENT CLASSES OF ANTI-DIABETIC DRUGS (LITERATURE REVIEW AND OWN RESEARCH). World Science, (3(75). https://doi.org/10.31435/rsglobal_ws/30042022/7803