Keywords: diabetes mellitus, diabetic myopathy, children, factor analysis.


Aim of study: to determine the pathogenetic factors that have an impact on the development of diabetic myopathy in children with DM1, to investigate the structure of the factors. The observation group included 136 children 14.3 ± 0.3 years old who have been suffering from DM1 for 1 to 10 years. Diagnosed diabetic myopathy in 45 (33.1%) patients (19 (24.4%) boys and 25 (44.8%) girls). By factor analysis, 5 factors were identified that are of leading importance in the pathogenesis of the development of diabetic myopathy in children with DM1. These factors accounted for 73.33% of the total dispersion. The first rank place was represented by the group factor (nitrotyrosine and homocysteine), which accounted for 19.54% of the total dispersion; interpreted as a factor of "oxidative stress". The second rank place was represented by the content of triglyceride in the blood serum and the level of the triglyceride-glucose complex, which amounted to 16.69% of the total dispersion; interpreted as "insulin resistance factor". The third rank place was interpreted as "the state of peripheral blood supply", which accounted for 13.93% of the total variance, and included the indicators of the ankle-brachial index before and after exercise stress. The fourth rank place was interpreted as an "anamnestic factor", which accounted for 12.04% of the total dispersion, and included three risk factors: age, sex of the patient, and duration of DM1. The fifth factor ("inflammation factor") included the indicators of glycosylated hemoglobin and interleukin-6, and demonstrates the development of chronic low-level inflammation against the background of hyperglycemia. Thus, using factor analysis, we determined that oxidative stress, insulin resistance, impaired peripheral circulation, duration of diabetes mellitus, female sex, chronic hyperglycemia, increased activity of proinflammatory cytokines had a priority effect on the pathogenesis of diabetic myopathy. We have formed a factorial model that will optimize the diagnosis of diabetic myopathy, improve approaches to its therapy and prevention, identifying among children with DM1 the risk group for the development and progression of this complication.


Choi, M., Choi, J. W., Chaudhari, H. N., Aseer, K. R., Mukherjee, R., & Yun, J. W. (2013). Genderdimorphic regulation of skeletal muscle proteins in streptozotocin-induced diabetic rats. Cellular Physiology and Biochemistry, 31(2-3), 408-420. Retrieved from https://doi.org/10.1159/000343378

Dydyshko Ju.V., Shepel'kevich A.P. (2015). Vozmozhnosti ocenki sostojanija myshechnogo komponenta v norme i pri saharnom diabete. Medicinskaja panorama, 5, 45-50.

Dikaiakou, E., Vlachopapadopoulou, E. A., Paschou, S. A., Athanasouli, F., Panagiotopoulos, Ι., Kafetzi, M., ... & Michalacos, S. (2020). Τriglycerides-glucose (TyG) index is a sensitive marker of insulin resistance in Greek children and adolescents. Endocrine, 70(1), 58-64. Retrieved from https://doi.org/10.1007/s12020-020-02374-6

Crawford, F., Welch, K., Andras, A., & Chappell, F. M. (2016). Ankle brachial index for the diagnosis of lower limb peripheral arterial disease. Cochrane Database of Systematic Reviews, (9). doi: 10.1002/14651858.CD010680.pub2.

Tihomirov N.P. Tihomirova N.P., Ushmaev N.P. (2011). Metody jekonometriki i mnogomernogo statisticheskogo analiza: Uch. M.: Jekonomika.

Ivanov V.V., Shahristova E.V., Stepovaja E.A., Litvjakov N.V., Perekucha N.A., Nosareva O.L., Fedorova T.S., Novickij V.V. (2017). Okislitel'nyj stress v patogeneze saharnogo diabeta 1 tipa: rol' ksantinoksidazy adipocitov. Bjulleten' sibirskoj mediciny, 16 (4), 134–143. DOI: 10.20538/1682-0363-2017-4-134–143

Jurisic-Erzen, D., Starcevic-Klasan, G., Ivanac, D., Peharec, S., Girotto, D., & Jerkovic, R. (2018). The effects of alpha-lipoic acid on diabetic myopathy. Journal of endocrinological investigation, 41(2), 203-209. Retrieved from https://doi.org/10.1007/s40618-017-0720-0

Suprun, Je. V., & Tereshhenko, S. V. (2017). Rol' jendotelial'noj disfunkcii v formirovanii oslozhnenij saharnogo diabeta i perspektivy ee korrekcii receptornym antagonistom interlejkina-1. Vіsnik naukovih doslіdzhen', (2), 5 -12. DOI 10.11603/2415-8798.2017.2.7612

Barrett, E. J., Liu, Z., Khamaisi, M., King, G. L., Klein, R., Klein, B. E., ... & Casellini, C. M. (2017). Diabetic microvascular disease: an endocrine society scientific statement. The Journal of Clinical Endocrinology & Metabolism, 102(12), 4343-4410. Retrieved from https://doi.org/10.1210/jc.2017-01922

Kusters, Y. H., & Barrett, E. J. (2016). Muscle microvasculature's structural and functional specializations facilitate muscle metabolism. American Journal of Physiology-Endocrinology and Metabolism, 310(6), E379-E387 Retrieved from https://doi.org/10.1152/ajpendo.00443.2015

Jurisic-Erzen, D., Starcevic-Klasan, G., Ivanac, D., Peharec, S., Girotto, D., & Jerkovic, R. (2018). The effects of alpha-lipoic acid on diabetic myopathy. Journal of endocrinological investigation, 41(2), 203-209. Retrieved from https://doi.org/10.1007/s40618-017-0720-0

Ahmad, K., Lee, E. J., Moon, J. S., Park, S. Y., & Choi, I. (2018). Multifaceted interweaving between extracellular matrix, insulin resistance, and skeletal muscle. Cells, 7(10), 148. Retrieved from https://doi.org/10.3390/cells7100148

Richardson, D. K., Kashyap, S., Bajaj, M., Cusi, K., Mandarino, S. J., Finlayson, J., ... & Mandarino, L. J. (2005). Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle. Journal of Biological Chemistry, 280(11), 10290-10297. Retrieved from https://doi.org/10.1074/jbc.M408985200

Berria, R., Wang, L., Richardson, D. K., Finlayson, J., Belfort, R., Pratipanawatr, T., ... & Mandarino, L. J. (2006). Increased collagen content in insulin-resistant skeletal muscle. American Journal of PhysiologyEndocrinology and Metabolism, 290(3), E560-E565. Retrieved from https://doi.org/10.1152/ajpendo.00202.2005

Fujita, S., Glynn, E. L., Timmerman, K. L., Rasmussen, B. B., & Volpi, E. (2009). Supraphysiological hyperinsulinaemia is necessary to stimulate skeletal muscle protein anabolism in older adults: evidence of a true age-related insulin resistance of muscle protein metabolism. Diabetologia, 52(9), 1889-1898. Retrieved from https://doi.org/10.1007/s00125-009-1430-8

Nomura, T., Ikeda, Y., Nakao, S., Ito, K., Ishida, K., Suehiro, T., & Hashimoto, K. (2007). Muscle strength is a marker of insulin resistance in patients with type 2 diabetes: a pilot study. Endocrine journal, 0709210026-0709210026. Retrieved from https://doi.org/10.1507/endocrj.K07-055

Holloway, G. P., Thrush, A. B., Heigenhauser, G. J., Tandon, N. N., Dyck, D. J., Bonen, A., & Spriet, L. L. (2007). Skeletal muscle mitochondrial FAT/CD36 content and palmitate oxidation are not decreased in obese women. American Journal of Physiology-Endocrinology and Metabolism, 292(6), E1782-E1789. Retrieved from https://doi.org/10.1152/ajpendo.00639.2006

Shi, Y. and Vanhoutte, P.M. (2017), Macro- and microvascular endothelial dysfunction in diabetes. Journal of Diabetes, 9: 434-449. Retrieved from https://doi.org/10.1111/1753-0407.12521

Kim, J. H., Lim, S., Choi, S. H., Kim, K. M., Yoon, J. W., Kim, K. W., ... & Kritchevsky, S. (2014). Sarcopenia: an independent predictor of mortality in community-dwelling older Korean men. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 69(10), 1244-1252. Retrieved from https://doi.org/10.1093/gerona/glu050

Onuchina, Ju. S., & Gur'eva, I. V. (2018). Vzaimosvjaz' sarkopenii i saharnogo diabeta tipa 2. Jendokrinologija: Novosti. Mnenija. Obuchenie, (4 (25)). doi:10.24411/2304-9529-2018-14004

Gaskin, F. S., Farr, S. A., Banks, W. A., Kumar, V. B., & Morley, J. E. (2003). Ghrelin-induced feeding is dependent on nitric oxide. Peptides, 24(6), 913-918. Retrieved from https://doi.org/10.1016/S0196-9781(03)00160-8

Onuchina Ju. S. (2019). Vlijanie saharnogo diabeta 2 tipa na klinicheskie osobennosti i diagnosticheskie kriterii sarkopenii u zhenshhin starshego vozrasta Dissertacija na soiskanie uchenoj stepeni kandidata medicinskih nauk Special'nost' 14.01.02. Jendokrinologija. Moskva.

Haddad, F., Zaldivar, F., Cooper, D. M., & Adams, G. R. (2005). IL-6-induced skeletal muscle atrophy. Journal of applied physiology, 98(3), 911-917. Retrieved from https://doi.org/10.1152/japplphysiol.01026.2004

Rosa, J. S., Flores, R. L., Oliver, S. R., Pontello, A. M., Zaldivar, F. P., & Galassetti, P. R. (2010). Resting and exercise-induced IL-6 levels in children with Type 1 diabetes reflect hyperglycemic profiles during the previous 3 days. Journal of Applied Physiology, 108(2), 334-342. Retrieved from https://doi.org/10.1152/japplphysiol.01083.2009





How to Cite
Chudova N. I., & Pashkova O. Ye. (2021). RISK FACTORS FOR DEVELOPING DIABETIC MYOPATHY IN CHILDREN WITH TYPE 1 DIABETES MELLITUS. World Science, (5(66). https://doi.org/10.31435/rsglobal_ws/30052021/7587