COMPARISON OF PLASMA COAGULABILITY AFTER SHORT-TERM TREATMENT WITH ROSUVASTATIN VERSUS ATORVASTATIN IN UNSTABLE ANGINA PATIENTS

Keywords: Unstable angina, atorvastatin, rosuvastatin, coagulation, prothrombin pool, soluble fibrin monomer complex

Abstract

Statins are the integral medications for the management of patients with acute coronary syndrome including unstable angina (UA) with multiple pleiotropic effects. However, the influence of statins on the coagulation system is controversial. Our study aimed to explore the effects of atorvastatin and rosuvastatin in high doses on some coagulation parameters (prothrombin pool (PP) and soluble fibrin-monomer complexes (SFMC) concentration) after a 7-days follow-up period in patients with UA. We recruited 50 patients aged 55 to 70 years with progressive UA. Standard therapy according to ESC guidelines 2020 was recommended for all patients. Before treatment onset, they were divided into 2 groups: group A – 26 patients were prescribed atorvastatin, group R – 24 patients with rosuvastatin treatment. The blood samples to analyze the concentration of PP and SFMC were collected twice – before the treatment onset and 7 days after. We revealed significant decrease in PP concentration (p=0,02) and increase in SFMC concentration (p=0,01) in group A patients while there were no significant changes of investigated parameters (p=0,94, p=0,57 respectively) in group R. Additionally, we have noted significant negative correlation between baseline PP concentration and direction of PP changes (r=-0,803, p<0,001) as well as PP changes direction and SFMC concentration after treatment (r=-0,655, p<0,001). Thus, we may consider that atorvastatin and rosuvastatin are characterized by different influences on coagulation in patients with progressive UA with standard basic treatment. The rebound coagulation system activation after anticoagulant discontinuation is more pronounced in UA patients against a background of atorvastatin treatment in comparison with rosuvastatin.

References

Gupta, K. K., Ali, S., & Sanghera, R. S. (2019). Pharmacological Options in Atherosclerosis: A Review of the Existing Evidence. Cardiology and therapy, 8(1), 5–20. https://doi.org/10.1007/s40119-018-0123-0

Collet, A. J., Thiele, H., Barbato, E., Barthélémy, O., Bauersachs, J., Bhatt, D. L., Dendale, P., Dorobantu, M., Edvardsen, T., Folliguet, T., Gale, C. P., Gilard, M., Jobs, A., Siontis, G. C. M. (2020). ESC Scientific Document Group, 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: The Task Force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). European Heart Journal, 00, 1-79. https://doi.org/10.1093/eurheartj/ehaa575

Cholesterol Trearment Trialists’ (CTT) Collaboration (2010). Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170000 participants in 26 randomised trials. The Lancet, 376(9753), 1670-1681. https://doi.org/10.1016/S0140-6736(10)61350-5

Gotto, A. M., & Moon, J. E. (2012). Management of cardiovascular risk: the importance of meeting lipid targets. The American journal of cardiology, 110(1 Suppl), 3A–14A. https://doi.org/10.1016/j.amjcard.2012.04.002

Toth, P. P., & Banach, M. (2019). Statins: Then and Now. Methodist DeBakey cardiovascular journal, 15(1), 23–31. https://doi.org/10.14797/mdcj-15-1-23

Oesterle, A., Laufs, U., & James, K. (2017). Pleiotropic Effects of Statins on the Cardiovascular System. Circulation Research, 120(1), 229-243. https://doi.org/10.1161/CIRCRESAHA.116.308537

Diamantis, E., Kyriakos, G., Quiles-Sanchez, L. V., Farmaki, P., & Troupis, T. (2017). The Anti-Inflammatory Effects of Statins on Coronary Artery Disease: An Updated Review of the Literature. Current cardiology reviews, 13(3), 209–216. https://doi.org/10.2174/1573403X13666170426104611

Liu, Z. J., Hu, G. P., Fei, M. Y., Yin, Z., Shi, Q. X., & Sun, F. (2018). Effects of Short-term High Dose Atorvastatin on Left Ventricular Remodeling in Patients with First Time Attack of Anterior Acute Myocardial Infarction. Chinese medical sciences journal = Chung-kuo i hsueh k'o hsueh tsa chih, 33(2), 84–90. https://doi.org/10.24920/11810

Asada, Y., Sato, Y., & Hatakeyama, K. (2020). Pathophysiology of atherothrombosis: Mechanisms of thrombus formation on disrupted atherosclerotic plaques. Pathology International, 70(6), 309-322. https://doi.org/10.1111/pin.12921

Arthamin, M. Z., Parmadi, L., Djatmiko, D. P., & Lawanto, E. R. (2019). Analysis of soluble fibrin monomer as diagnostic marker for acute myocardial infarction and its correlation with cardiac troponin I. Clinical Pathology and Medical Laboratory, 25(3), 279-282. http://dx.doi.org/10.24293/ijcpml.v25i3.1505

Weisel, J. W., & Litvinov, R. I. (2013). Mechanisms of fibrin polymerization and clinical implications. Blood, 121(10), 1712–1719. https://doi.org/10.1182/blood-2012-09-306639

Undas, A., Brummel-Ziedins, K. E., Mann, K. G. (2014). Anticoagulant effects of statins and their clinical implications. Thrombosis and Haemostasis, 111, 1-9. http://doi.org/10.1160/TH13-08-0720

Gue, Y. X., & Gorog, D. A. (2017). Importance of Endogenous Fibrinolysis in Platelet Thrombus Formation. International journal of molecular sciences, 18(9), 1850. https://doi.org/10.3390/ijms18091850

Maciejak, A., Leszczynska, A., & Warchol, I. (2013). The effects of statins on the mevalonic acid pathway in recombinant yeast strains expressing human HMG-CoA reductase. BMC Biotechnol 13, 68. https://doi.org/10.1186/1472-6750-13-68

Raksha, N., Burlova-Vasylieva, M., Torgalo, E., & Savchuk, O. (2014). The appearance of molecules of Prothrombin origin in blood upon development of atherothrombotic and cardioembolic ischemic stroke. Bulletin of Taras Shevchenko National University of Kyiv Series Biology, 68(3), 57-60. 10.17721/1728_2748.2014.68.57-60

Karlson, B. W., Palmer, M. K., Nicholls, S. J., Lundman, P., & Barter, P. J. (2016). Doses of rosuvastatin, atorvastatin and simvastatin that induce equal reductions in LDL-C and non-HDL-C: Results from the VOYAGER meta-analysis. European journal of preventive cardiology, 23(7), 744–747. https://doi.org/10.1177/2047487315598710

Liu, Z. J., Hu, G. P., Fei, M. Y., Yin, Z., Shi, Q. X., & Sun, F. (2018). Effects of Short-term High Dose Atorvastatin on Left Ventricular Remodeling in Patients with First Time Attack of Anterior Acute Myocardial Infarction. Chinese medical sciences journal = Chung-kuo i hsueh k'o hsueh tsa chih, 33(2), 84–90. https://doi.org/10.24920/11810

Undas, A., Brummel-Ziedins, K. E., & Mann, K. (2005). Statins and Blood Coagulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(2), 287-294. https://doi.org/10.1161/01.ATV.0000151647.14923.ec

Undas, A., Brummel, K. E., Musial, J., Mann, K. G., & Szczeklik, A. (2001). Simvastatin depresses blood clotting by inhibiting activation of prothrombin, factor V, and factor XIII and by enhancing factor Va inactivation. Circulation, 103(18), 2248–2253. https://doi.org/10.1161/01.cir.103.18.2248

G.Tonu, S., Dewan, J., Hasnat, F., & Jahan, B. (2018). Comparison Between Atorvastatin and Rosuvastatin on Anti- Thrombogenic Effect in Patients with Hyperlipidemia. Journal of Enam Medical College, 8(3), 153-158. https://doi.org/10.3329/jemc.v8i3.38365

Fenton II, J. W., Brezniak, F. A., Ofosu, F. A., Shen, G. X., Jacobson, J. R., & Garcia, J. G. N. (2005). Statins and Thrombin. Current Drug Targets – Cardiovascular & Hematological Disorders, 5(2), 115-120. https://doi.org/10.2174/1568006043586189

Olivotti, L., Ghigliotti, G., Spallarossa, P., Leslie, S., Rossettin, P., Barsotti, A., & Brunelli, C. (2002). High doses of atorvastatin do not affect activity of prothrombinase in patients with acute coronary syndromes. Blood Coagul Fibrinolysis, 13(4), 315–322.

Bijsterveld, Nick. R., Moons, A. H., Meijers, J. C. M., Tijssen, J. G. P., Buller, H. R., Levi, M., & Peters, R. J. (2002). Rebound thrombin generation after heparin therapy in unstable angina: A randomized comparison between unfractionated and low-molecular-weight heparin. Journal of the American College of Cardiology, 39(5), 811-817. https://doi.org/10.1016/S0735-1097(01)01825-3

Bates, E.R., Lau, W.C., & Angiolillo, D.J. (2011). Clopidogrel-drug interactions. Journal of American College of Cardiology, 57(11), 1251-1263. https://doi.org/10.1016/j.jacc.2010.11.024

Brophy, J.M., Babapulle, M.N., Costa, V., & Rinfret, S. (2006). A pharmacoepidemiology study of the interaction between atorvastatin and clopidogrel after percutaneous coronary intervention. American Heart Journal, 152(2), 263-269. https://doi.org/10.1016/j.ahj.2005.08.023.

Views:

308

Downloads:

222

Published
2020-09-14
Citations
How to Cite
Tyravska, Y., Lizogub, V., Raksha, N., & Savchuk, O. (2020). COMPARISON OF PLASMA COAGULABILITY AFTER SHORT-TERM TREATMENT WITH ROSUVASTATIN VERSUS ATORVASTATIN IN UNSTABLE ANGINA PATIENTS. World Science, (7(59). https://doi.org/10.31435/rsglobal_ws/30092020/7202
Section
Medicine