A NOVEL LECTIN CONTAINING PROTEIN FRACTIONS FROM ARTEMISIA DRACUNCULUS AND MENTHA PULEGIUM, SOME ISOLATION PROPERTIES AND POTENTIAL IN MEDICINE
Abstract
Lectins show antiviral activity as well. The growing resistance of microorganisms to convectional antimicrobial agents is a source of concern to clinical microbiologists all over the world. As a result, efforts are being made to develop antimicrobial agents from local sources for better chemotherapeutic effects. A novel lectin containing protein fractions (AD1 and MP1) are isolated from widespread commercially available edible plants Artemisia dracunculus and Mentha pulegium. The fractions had special agglutinating activity with rabbit trypsin-treated erythrocytes at minimum concentrations of 0.05 mg/ml and 0.017 mg/ml respectively. Furthermore, lectin activity of isolated fractions was confirmed by the inhibition of hemagglutination activities with carbohydrates D-galactose (in the case of Artemisia dracunculus) and Dtrehalose dehydrate (in the case of Mentha pulegium) at minimum concentrations of 0.78 mM and 25 mM respectively. Due to the carbohydrate specificity, lectin containing fraction from Mentha pulegium inhibits growth and development of Actinomyces griseus and Streptomyces albogriseolus subsp. Aragviensis. Many anti-inflammatory medications currently prescribed are of plant origin. So, the biggest challenge is to move from demonstrating the effectiveness of plant extracts to identifying molecules that have the desired effect. Soluble galactosespecific lectin fraction from Artemisia dracunculus has no effect on growth and development of Actinomicetes, while soluble lectin fraction with trehalose binding specificity inhibits growth and development of Actinomyces griseus, and Streptomyces albogriseolus subsp. Aragviensis, but no action was detected in the case of Nocardiopsis dessonvillei. Based on the data only Mentha pulegium soluble lectin influence on spore viability has been studied.
References
Mariya Tsaneva, Els J M Van Damme. 130 years of Plant Lectin Research. Glycoconj J. 2020 Oct;37(5):533-551. doi: 10.1007/s10719-020-09942-y.
Mody R, Joshi S, Chaney W. Use of lectins as diagnostic and therapeutic tools for cancer. J Pharmacol Toxicol Methods. 1995; 33:1–10.
Tammy Yau, Xiuli Dan, Charlene Cheuk Wing Ng, and Tzi Bun Ng. Lectins with Potential for Anti-Cancer Therapy. Molecules. 2015 Mar; 20(3): 3791–3810.
Jacilane XM, Tarcisio VB, Thais PCF, Renan OSD, MH, José L, Leila MB, André L, Ana L. Lectin from red algae Amansia multifida Lamouroux: Extraction, characterization and anti-inflammatory activity. International Journal of Biological Macromolecules, 2021, 170(15):532-539.
Anupama S, Preeti Laha, Mamta Sharma, Kamal Pathak, Sanjay Bane, Arvind D. Ingle, Vikram Gota, Rajiv D. Kalraiya, Lu-Gang Yu, Jonathan M. Rhodes, Bale M. Swamy, Shashikala R. Inamdar. Pharmacokinetics, biodistribution and antitumour effects of Sclerotium rolfsii lectin in mice. Oncology Reports, 2017,3: 2803-2810.
Ang ASW, Cheung RCF, Dan X, Chan YS, Pan W, Ng TB. Purification and Characterization of a GlucosamineBinding Antifungal Lectin from Phaseolus vulgaris cv. Chinese pinto Beans with Antiproliferative Activity Towards Nasopharyngeal Carcinoma Cells. Appl Biochem. 2014;172(2):672-686.
Koiri RK, Mehrotra A, Trigun SK. Dalton’s Lymphoma as a Murine Model for Understanding the Progression and Development of T-Cell Lymphoma and its Role in Drug Discovery. Int J Immunother Cancer Res. 2017;3(1):1-6.
Nascimento APM, Knaut JL, Rieger DK, Wolin IA, Heinrich IA, Mann J, et al. (2018). Anti-glioma properties of DVL, a lectin purified from Dioclea violacea. Int J Bio Macromol. 2018,120:566-577.
Le Dinh Hung and Phan Hi Hoai Trinh. Structure and antitumor activity of a new lectin from the cultivated red alga KAPPAPHYCUS STRIATUS. J Natural Medicing, 2021,75:223-231.
Lei-lei Fu, Cheng-cheng Zhou, Shun Yao, Jia-ying Yu, Bo Liu, Jin-ku Bao. Plant lectins: Targeting programmed cell death pathways as antitumor agents. The International Journal of Biochemistry & Cell Biology, 2011,43(10):1442-1449.
Kim MS., Lee J., Lee KM., Yang SH., Choi S., Chung SY., Kim TY., Jeong WH., Park R. ‘’Involvement of hydrogen peroxide in mistletoe lectin-II-indused apoptosis of cells.’’ Life Sci. 2003,73(10):1231-43.
Jiang Q.-L., Zhang S., Tian M., Zhang S.-Y., Xie T., Chen D.-Y., Chen Y.-J., He J., Liu J., Ouyang L. and Jiang X. Plant lectins, from ancient sugar-binding proteins to emerging anti-cancer drugs in apoptosis and autophagy. Cell proliferation. 2015,48(1):17–28.
De Mejia EG, Bradford T, Hasler C. The anticarcinogenic potential of soybean lectin and lunasin. Nutr Rev (2003) 61:239–246.
Fonseca V, Braga A, Filho J, Claudener Souza Teixeira C, Hora G, Morais-Braga M. A review on the antimicrobial properties of lectins. International Journal of Biological Macromolecules, 2022(195):163-178. doi.org/10.1016/j.ijbiomac.2021.11.209.
Ziatabar S, Zepf J, Rich S, Danielson BT, Bollyky PI, Stern R. Chitin, chitinases, and chitin lectins: Emerging roles in human pathophysiology. Pathophysiology. 2018;25(4):253-262.
Mishra RP, Ganaie AA, Allaie AH. Isolation and purification of a Galactose specific lectin from seeds of Bauhinia variegata and evaluation of its antimicrobial potential. Int J Pharm Sci Res. 2016;7(2):804-815.
de Souza Carvalho, da Silva MV, Gomes FS, Paiva PMG, Malafaia CB, da Silva TD, et al. Purification, characterization and antibacterial potential of a lectin isolated from Apuleia leiocarpa seeds. Int J Biol. Macromol. 2015; 75:402-408.
Pusztai A. Dietary lectins are metabolic signals for the gut and modulate immune and hormone functions. Eur J Clin Nutr (1993) 47:691–699.
Nishimura H, Nishimura M, Oda R, Yamanaka K, Matsubara T, Ozaki Y, et al. Lectins induce resistance to proteases and/or mechanical stimulus in all examined cells – including bone marrow mesenchymal stem cells – on various scaffolds. Exp Cell Res 2004, 295:119–127.
Baintner K, Jakab G, Gyori Z, Kiss P. Binding of FITC-labelled lectins to the gastrointestinal epithelium of the rat. Pathol Oncol Res 2000, 6:179–183.
Rudiger H, Siebert HC, Solis D, Jimenez-Barbero J, Romero A, Von Der Lieth CW, et al. Medicinal chemistry based on the sugar code: fundamentals of lectinology and experimental strategies with lectins as targets. Curr Med Chem 2000, 7:389–416.
Larsson M, Broman J. Translocation of GluR1-containing AMPA receptors to a spinal nociceptive synapse during acute noxious stimulation. J Neurosci 2008, 28:7084–7090.
Bies C, Lehr CM, Woodley JF. Lectin-mediated drug targeting: history and applications. Adv Drug Deliv Rev (2004) 56:425–435.
Dalla PC, Rizzi C, Mosconi S, Zoccatelli G, Peruffo A, Chignola R. Plant lectins as carriers for oral drugs: is wheat germ agglutinin a suitable candidate? Toxicol Appl Pharmacol (2005) 207:170–8.
Nishimura H, Nishimura M, Oda R, Yamanaka K, Matsubara T, Ozaki Y, et al. Lectins induce resistance to proteases and/or mechanical stimulus in all examined cells – including bone marrow mesenchymal stem cells – on various scaffolds. Exp Cell Res (2004) 295:119–27.
Liuyi Dang, Els J.M. van Damme. Toxic proteins in plants. Phytochemistry, 2015,117:51-64.
Figueira N., Curtain F., Beck E., Grafenauer S. Consumer Understanding and Culinary Use of Legumes in Australia. Nutrients. 2019; 11:1575.
Pasqualone A., Costantini M., Coldea T.E., Summo C. Use of Legumes in Extrusion Cooking: A Review. Foods. 2020; 9:958.
Pusztai A, Grant G, Spencer RJ, Duguid TJ, Brown DS, Ewen SW, et al. Kidney bean lectin-induced Escherichia coli overgrowth in the small intestine is blocked by GNA, a mannose-specific lectin. J Appl Bacteriol (1993) 75:360–368.
Vasconcelos IM, Oliveira JT. Antinutritional properties of plant lectins. Toxicon. 2004 Sep 15;44(4):385-403.
Petroski W, Minich DM. Is There Such a Thing as “Anti-Nutrients”? A Narrative Review of Perceived Problematic Plant Compounds. Nutrients. 2020 Oct;12(10):2929.
Liu Z, Luo Y, Zhou TT, Zhang WZ. Could plant lectins become promising anti-tumour drugs for causing autophagic cell death? Cell Prolif. 2013 Oct;46(5):509-15.
Takatsy G. Lectins as molecules and tool. Symp. Series Immunobiol. Standart. 1997,4:275-280.
Liener I. Phytohemagglutinins (phytolectins). Ann. Rev. Plant Physiol., 1996,27:291-319.
WJ Peumans, M Nsimba-Lubaki, AR Carlier, E Van Driessche. A lectin from Bryonia dioica root stocks. Planta, 1984,160:222-228.
Lis H., Sharon N. Lectins as molecules and tools. Ann. Rev. Biochem.,1996,55:35-67.
Chang-Shan Chen, Chun-Yi Chen, Divya Malathy Ravinath, Agustina Bungahot, Chi-Ping Cheng, and Ren-In You. Functional characterization of chitin-binding lectin from Solanum integrifolium containing anti-fungal and insecticidal activities. BMC Plant Biol. 2018;18(3):2-11.
Lowry O.H., Rosebrought N.J., Far A. L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1991,193(1):265-271.
Kuznetsov V.D. Study of the variability of actinomycetes – producers of antibiotics and other biologically active substances. Antibiotics, 1992,7:666-671.
Zhukova R.A., Kommunarskaya A.D., Pronina M.I., Tereshin I.M., Zhuravleva I.P., Shabas M.I. Methods for selection of producers of antibiotics and enzymes. Ed. "Medicine", L., 1978.
Carol L. N. Lectins: Analytical Tools from Nature. Lectins; Analytical Technologies, 2007, 1-13.
Bandara A, Fraser S, Chambers PJ, Stanley GA. Trehalose promotes the survival of Saccharomyces cerevisiae during lethal ethanol stress, but does not influence growth under sublethal ethanol stress. FEMS Yeast Research, 2009,9(8):1208–1216.
Rîmbu, C. M., Serbezeanu, D., Vlad-Bubulac, T., Suflet, D. M., Motrescu, I., Lungoci, C., Robu, T., Vrînceanu, N., Grecu, M., Cozma, A. P., Fotea, L., Anița, D. C., Popovici, I., & Horhogea, C. E. (2023). Antimicrobial Activity of Artemisia dracunculus Oil-Loaded Agarose/Poly (Vinyl Alcohol) Hydrogel for Bio-Applications. Gels (Basel, Switzerland), 10(1), 26.
Eisenman S.W., Struwe L. The global distribution of wild tarragon (Artemisia dracunculus L.; Asteraceae) cytotypes with twenty-seven new records from North America. Genet. Resour. Crop. Evol. 2011; 58:1199–1212.
Ekiert H., Klimek-Szczykutowicz M., Rzepiela A., Klin P., Szopa A. Artemisia Species with High Biological Values as a Potential Source of Medicinal and Cosmetic Raw Materials. Molecules. 2022; 27:6427.
Ekiert H., Świątkowska J., Knut E., Klin P., Rzepiela A., Tomczyk M., Szopa A. Artemisia dracunculus (Tarragon): A Review of Its Traditional Uses, Phytochemistry and Pharmacology. Front. Pharmacol. 2021; 12:653993.
Aglarova A.M., Zilfikarov I.N., Severtseva O.V. Biological characteristics and useful properties of tarragon (Artemisia dracunculus L.) Pharm. Chem. J. 2008;42:81–86.
Majdan M., Kiss A.K., Hałasa R., Granica S., Osińska E., Czerwińska M.E. Inhibition of Neutrophil Functions and Antibacterial Effects of Tarragon (Artemisia dracunculus L.) Infusion—Phytochemical Characterization. Front. Pharmacol. 2020; 11:947.
Obolskiy D., Pischel I., Feistel B., Glotov N., Heinrich M. Artemisia dracunculus L. (Tarragon): A Critical Review of Its Traditional Use, Chemical Composition, Pharmacology, and Safety. J. Agric. Food Chem. 2011; 59:11367–11384.
Eidi A., Oryan S., Zaringhalam J., Rad M. Antinociceptive and anti-inflammatory effects of the aerial parts of Artemisia dracunculus in mice. Pharm. Biol. 2016; 54:549–554.
Maham M., Moslemzadeh H., Jalilzadeh-Amin G. Antinociceptive effect of the essential oil of tarragon (Artemisia dracunculus) Pharm. Biol. 2013;52:208–212.
Méndez-del Villar M., Puebla-Pérez A.M., Sánchez-Peña M.J., González-Ortiz L.J., Martínez-Abundis E., González-Ortiz M. Effect of Artemisia dracunculus Administration on Glycemic Control, Insulin Sensitivity, and Insulin Secretion in Patients with Impaired Glucose Tolerance. J. Med. Food. 2016; 19:481–485.
Shahriyary L., Yazdanparast R. Inhibition of blood platelet adhesion, aggregation and secretion by Artemisia dracunculus leaves extracts. J. Ethnopharmacol. 2007; 114:194–198.
Ayşe K., Çağlak E. Phytochemical Research and Evaluation of Tarragon (Artemisia dracunculus L.) as a Food Additive. Recep Tayyip Erdoğan Üniversitesi Fen Mühendislik Bilim. Derg. 2022; 3:50–60.
Kheterpal I., Coleman L., Ku G., Wang Z.Q., Ribnicky D., Cefalu W.T. Regulation of insulin action by an extract of Artemisia dracunculus L. in primary human skeletal muscle culture: A proteomics approach. Phytother. Res. 2010; 24:1278–1284.
Lopes-Lutz D., Alviano D.S., Alviano C.S., Kolodziejczyk P.P. Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry. 2008; 69:1732–1738.
Scott, M. C., Bourgeois, A., Yu, Y., Burk, D. H., Smith, B. J., & Floyd, Z. E. (2023). Extract of Artemisia dracunculus L. Modulates Osteoblast Proliferation and Mineralization. International journal of molecular sciences, 24(17), 13423.
Smoak, P., Burke, S. J., Martin, T. M., Batdorf, H. M., Floyd, Z. E., & Collier, J. J. (2022). Artemisia dracunculus L. Ethanolic Extract and an Isolated Component, DMC2, Ameliorate Inflammatory Signaling in Pancreatic β-Cells via Inhibition of p38 MAPK. Biomolecules, 12(5), 708.
Osanloo, M., Firooziyan, S., Abdollahi, A., Hatami, S., Nematollahi, A., Elahi, N., & Zarenezhad, E. (2022). Nanoemulsion and nanogel containing Artemisia dracunculus essential oil; larvicidal effect and antibacterial activity. BMC research notes, 15(1), 276.
Vandanmagsar, B., Yu, Y., Simmler, C., Dang, T. N., Kuhn, P., Poulev, A., Ribnicky, D. M., Pauli, G. F., & Floyd, Z. E. (2021). Bioactive compounds from Artemisia dracunculus L. activate AMPK signaling in skeletal muscle. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 143, 112188.
Caputo, L., Cornara, L., Raimondo, F. M., De Feo, V., Vanin, S., Denaro, M., Trombetta, D., & Smeriglio, A. (2021). Mentha pulegium L.: A Plant Underestimated for Its Toxicity to Be Recovered from the Perspective of the Circular Economy. Molecules (Basel, Switzerland), 26(8),
El-Gazar, A. A., Emad, A. M., Ragab, G. M., & Rasheed, D. M. (2022). Mentha pulegium L. (Pennyroyal, Lamiaceae) Extracts Impose Abortion or Fetal-Mediated Toxicity in Pregnant Rats; Evidenced by the Modulation of Pregnancy Hormones, MiR-520, MiR-146a, TIMP-1 and MMP-9 Protein Expressions, Inflammatory State, Certain Related Signaling Pathways, and Metabolite Profiling via UPLC-ESI-TOFMS. Toxins, 14(5), 347.
Al-Rajhi, A. M. H., Qanash, H., Almuhayawi, M. S., Al Jaouni, S. K., Bakri, M. M., Ganash, M., Salama, H. M., Selim, S., & Abdelghany, T. M. (2022). Molecular Interaction Studies and Phytochemical Characterization of Mentha pulegium L. Constituents with Multiple Biological Utilities as Antioxidant, Antimicrobial, Anticancer and Anti-Hemolytic Agents. Molecules
Abdelghany T.M., Eman M.E.T., El-Sheikh H.H. Efficacy of fungal rust disease on willow plant in Egypt. Aust. J. Basic Appl. Sci. 2009; 3:1527–1539.
Abdelghany T.M. Eco-friendly and safe role of Juniperus procera in controlling of fungal growth and secondary metabolites. J. Plant Pathol. Microbiol. 2014; 5:231.
Abdelghany T.M. Safe food additives: A review. J. Biol. Chem. Res. 2015; 32:402–437.
Brahmi F., Khodir M., Mohamed C., Pierre D. Aromatic and Medicinal Plants-Back to Nature. London, UK: 2017. [(accessed on 19 July 2022)]. Chemical Composition and Biological Activities of Mentha Species; pp. 47–49. Available online: https://www.intechopen.com/books/5612.
Marzouk M.M., Hussein S.R., Elkhateeb A., El-shabrawy M., Abdel-Hameed E.S., Kawashty S.A. Comparative study of Mentha species growing wild in Egypt: LC-ESI-MS analysis and chemosystematic significance. J. App. Pharm. Sci. 2018; 8:116–122.
Teixeira B., Marques A., Ramos C., Batista I., Serrano C., Matos O., Neng N.R., Nogueira J.M., Saraiva J.A., Nunes M.L. European pennyroyal (Mentha pulegium) from Portugal: Chemical composition of essential oil and antioxidant and antimicrobial properties of extracts and essential oil. Ind. Crop. Prod. 2012; 36:81–87.
Caputo L., Cornara L., Raimondo F., De Feo V., Vanin S., Denaro M., Trombetta D., Smeriglio A. Mentha pulegium L.: A Plant Underestimated for Its Toxicity to Be Recovered from the Perspective of the Circular Economy. Molecules. 2021; 26:2154.
Boukhebti H., Chaker A.N., Belhadj H., Sahli F., Ramdhani M., Laouer H., Harzallah D. Chemical composition and antibacterial activity of Mentha pulegium L. and Mentha spicata L. essential oils. Der Pharm. Lett. 2011; 3:267–275.
Baali F., Boumerfeg S., Napoli E., Boudjelal A., Righi N., Deghima A., Baghiani A., Ruberto G. Chemical Composition and Biological Activities of Essential Oils from Two Wild Algerian Medicinal Plants: Mentha pulegium L. and Lavandula stoechas L. J. Essent. Oil Bear. Plants. 2019; 22:821–837.
Patti F., Palmioli A., Vitalini S., Bertazza L., Redaelli M., Zorzan M., Rubin B., Mian C., Bertolini C., Iacobone M., et al. Anticancer Effects of Wild Mountain Mentha longifolia Extract in Adrenocortical Tumor Cell Models. Front. Pharmacol. 2020; 10:1647.
Alharbi N.K., Naghmouchi S., Al-Zaban M. Evaluation of Antimicrobial Potential and Comparison of HPLC Composition, Secondary Metabolites Count, and Antioxidant Activity of Mentha rotundifolia and Mentha pulegium Extracts. Evid. -Based Complement. Altern. Med. 2021; 2021:9081536.
Sebai E., Serairi R., Saratsi K., Abidi A., Sendi N., Darghouth M.A., Wilson M.S., Sotiraki S., Akkari H. Hydro-Ethanolic Extract of Mentha pulegium Exhibit Anthelmintic and Antioxidant Proprieties In Vitro and In Vivo. Acta Parasitol. 2020; 65:375–387.
Brahmi F., Khodir M., Mohamed C., Pierre D. Aromatic and Medicinal Plants-Back to Nature. London, UK: 2017. [(accessed on 19 July 2022)]. Chemical Composition and Biological Activities of Mentha Species; pp. 47–49. Available online: https://www.intechopen.com/books/5612
Marzouk M.M., Hussein S.R., Elkhateeb A., El-shabrawy M., Abdel-Hameed E.S., Kawashty S.A. Comparative study of Mentha species growing wild in Egypt: LC-ESI-MS analysis and chemosystematic significance. J. App. Pharm. Sci. 2018; 8:116–122.
Teixeira B., Marques A., Ramos C., Batista I., Serrano C., Matos O., Neng N.R., Nogueira J.M., Saraiva J.A., Nunes M.L. European pennyroyal (Mentha pulegium) from Portugal: Chemical composition of essential oil and antioxidant and antimicrobial properties of extracts and essential oil. Ind. Crop. Prod. 2012; 36:81–87.
Caputo L., Cornara L., Raimondo F., De Feo V., Vanin S., Denaro M., Trombetta D., Smeriglio A. Mentha pulegium L.: A Plant Underestimated for Its Toxicity to Be Recovered from the Perspective of the Circular Economy. Molecules. 2021; 26:2154.
Boukhebti H., Chaker A.N., Belhadj H., Sahli F., Ramdhani M., Laouer H., Harzallah D. Chemical composition and antibacterial activity of Mentha pulegium L. and Mentha spicata L. essential oils. Der Pharm. Lett. 2011; 3:267–275.
Baali F., Boumerfeg S., Napoli E., Boudjelal A., Righi N., Deghima A., Baghiani A., Ruberto G. Chemical Composition and Biological Activities of Essential Oils from Two Wild Algerian Medicinal Plants: Mentha pulegium L. and Lavandula stoechas L. J. Essent. Oil Bear. Plants. 2019; 22:821–837. Patti F., Palmioli A., Vitalini S., Bertazza L., Redaelli M., Zorzan M., Rubin B., Mian C., Bertolini C., Iacobone M., et al. Anticancer Effects of Wild Mountain Mentha longifolia Extract in Adrenocortical Tumor Cell Models. Front. Pharmacol. 2020; 10:1647. Alharbi N.K., Naghmouchi S., Al-Zaban M. Evaluation of Antimicrobial Potential and Comparison of HPLC Composition, Secondary Metabolites Count, and Antioxidant Activity of Mentha rotundifolia and Mentha pulegium Extracts. Evid. -Based Complement. Altern. Med. 2021; 2021:9081536.
Sebai E., Serairi R., Saratsi K., Abidi A., Sendi N., Darghouth M.A., Wilson M.S., Sotiraki S., Akkari H. Hydro-Ethanolic Extract of Mentha pulegium Exhibit Anthelmintic and Antioxidant Proprieties In Vitro and In Vivo. Acta Parasitol. 2020; 65:375–387.
El Hassani F.Z. Characterization, activities, and ethnobotanical uses of Mentha species in Morocco. Heliyon. 2020;6: e05480.
Piras A., Porcedda S., Falconieri D., Maxia A., Gonçalves M., Cavaleiro C., Salgueiroet L. Antifungal activity of essential oil from Mentha spicata L. and Mentha pulegium L. growing wild in Sardinia Island (Italy) Nat. Prod. Res. 2021;35:993–999.
Bektašević M., Politeo O., Carev I. Comparative Study of Chemical Composition, Cholinesterase Inhibition and Antioxidant Potential of Mentha pulegium L. Essential Oil. Chem. Biodivers. 2021;18: e2000935.
Garcia-Oliveira P., Otero P., Pereira A., Chamorro F., Carpena M., Echave J., Fraga-Corral M., Simal-Gandara J., Prieto M. Status and Challenges of Plant-Anticancer Compounds in Cancer Treatment. Pharmaceuticals. 2021; 14:157.
Bakri M.M., El-Naggar M.A., Helmy E.A., Ashoor M.S., Ghany T.M.A. Efficacy of Juniperus procera Constituents with Silver Nanoparticles Against Aspergillus fumigatus and Fusarium chlamydosporum. BioNanoScience. 2020; 10:62–72.
Abdelghany T., Yahya R., Bakri M.M., Ganash M., Amin B.H., Qanash H. Effect of Thevetia peruviana Seeds Extract for Microbial Pathogens and Cancer Control. Int. J. Pharmacol. 2021; 17:643–655.
Views:
66
Downloads:
40
Copyright (c) 2024 Liliana Tskitishvili, Nodar Sulashvili, Matrona Chachua
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.