ARTIFICIAL INTELLIGENCE IN TAX ENFORCEMENT: THE ROLE OF PERCEIVED AI CAPABILITY IN SHAPING TAX EVASION INTENTION
Abstract
This study examines the effect of perceived artificial intelligence (AI) capability on tax evasion intention among corporate taxpayers in Indonesia. As digitalization and the adoption of AI in tax administration continue to expand, understanding how taxpayers cognitively respond to advanced technological surveillance has become increasingly important, particularly in developing country contexts. Using a quantitative explanatory design, data were collected through an online structured questionnaire administered to corporate tax decision-makers, yielding 278 valid responses. Hypotheses were tested using Partial Least Squares–Structural Equation Modeling (PLS-SEM) with SmartPLS.
The empirical results indicate that perceived AI capability has a positive and significant effect on tax evasion intention, suggesting that the hypothesized negative relationship is not empirically supported. This finding implies that higher perceptions of AI-based surveillance capability do not automatically deter tax evasion intentions. Instead, they may encourage more adaptive and strategic responses in corporate tax planning. Corporate taxpayers appear to respond to sophisticated monitoring technologies by engaging in more complex risk evaluations rather than uniformly increasing compliance.
The study contributes to the tax behavior literature by integrating perceived AI capability as a technology-based psychological factor within the behavioral intention framework. From a practical perspective, the findings suggest that the implementation of AI in tax administration should be accompanied by policies emphasizing transparency, legal certainty, and clear risk communication to prevent strategic behavioral adaptation by corporate taxpayers.
References
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T
Alleyne, P., & Harris, T. (2017). Antecedents of taxpayers’ intentions to engage in tax evasion: evidence from Barbados. Journal of Financial Reporting and Accounting, 15(1), 2–21. https://doi.org/10.1108/JFRA-12-2015-0107
Aslett, J. (2024). Understanding Artificial Intelligence in Tax and Customs Administration. Technical Notes and Manuals, 2024(006), 1. https://doi.org/10.5089/9798400290435.005
Bruns, C., Fochmann, M., Mohr, P. N. C., & Torgler, B. (2025). Multidimensional tax compliance attitude. Journal of Economic Psychology, 110, 102848. https://doi.org/10.1016/j.joep.2025.102848
Castelo, N., Bos, M. W., & Lehmann, D. R. (2019). Task-Dependent Algorithm Aversion. Journal of Marketing Research, 56(5), 809–825. https://doi.org/10.1177/0022243719851788
Corly, F., Ariana, S., Trisninawati, Fitriasuri, Perdana, B., & Saputra, D. R. (2025). Peran Big Data Dan Artificial Intelligence Dalam Optimalisasi Pengawasan Pajak. Management, Business, and Accounting (MBIA), 23(3), 370–376. https://doi.org/https://doi.org/10.33557/cw2tyd15
Dietvorst, B. J., Simmons, J. P., & Massey, C. (2015). Algorithm aversion: People erroneously avoid algorithms after seeing them err. Journal of Experimental Psychology: General, 144(1), 114–126. https://doi.org/10.1037/xge0000033
Fadhilah, L., Salsabila, S., & Aji, G. (2025). Artificial Intelligence dalam Administrasi Pajak: Tinjauan Literatur Mengenai Efisiensi, Transparansi, dan Akuntanbilitas. Jurnal Ilmiah Wahana Akuntansi, 20, 130–144. https://doi.org/https://doi.org/10.21009/Wahana.20.0210
Faradina, F. (2024, July 2). Jangan Jadi Pengemplang Pajak . Direktorat Jenderal Pajak. https://pajak.go.id/en/node/108485
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8
Kamil, I., Mareta, S., . L., . Y., & Suryadi, E. (2023). The Effect of Indonesian Digital Service Tax, Financial Capability on Tax Evasion. KnE Social Sciences. https://doi.org/10.18502/kss.v8i12.13659
Karlina, Y., Kurniawan, A., & Umiyati, I. (2021). Faktor-Faktor Yang Mempengaruhi Niat Melakukan Penggelapan Pajak. JASS (Journal of Accounting for Sustainable Society), 2(02). https://doi.org/10.35310/jass.v2i02.670
Kokina, J., & Davenport, T. H. (2017). The Emergence of Artificial Intelligence: How Automation is Changing Auditing. Journal of Emerging Technologies in Accounting, 14(1), 115–122. https://doi.org/10.2308/jeta-51730
Kumar, J., Rani, G., Rani, M., & Rani, V. (2025). What factors influence the individual’s behavior in engaging in income tax evasion? An investigation using SEM and fsQCA. Asian Review of Accounting, 33(4), 609–628. https://doi.org/10.1108/ARA-06-2024-0184
Kurnia Rahayu, S. (2021). Utilization of Artificial Intelligence in Tax Audit in Indonesia. Management and Accounting Review, 20(3). https://doi.org/10.24191/MAR.V20i03-06
Lee, J. D., & See, K. A. (2004). Trust in Automation: Designing for Appropriate Reliance. Human Factors: The Journal of the Human Factors and Ergonomics Society, 46(1), 50–80. https://doi.org/10.1518/hfes.46.1.50_30392
Logg, J. M., Minson, J. A., & Moore, D. A. (2019). Algorithm appreciation: People prefer algorithmic to human judgment. Organizational Behavior and Human Decision Processes, 151, 90–103. https://doi.org/10.1016/j.obhdp.2018.12.005
Ningsih, D. N. C., Rokhimakhumullah, D. N. F., Suryani, Y., & Mahendra, I. I. (2025). An Effectiveness Analysis of Tax Administration Digitalization Reducing the Shadow Economy in Indonesia. KnE Social Sciences, 10(13), 93–117. https://doi.org/10.18502/kss.v10i13.18943
Noral Hidayah Alwi, Zahir Osman, & Sellywati Faizal. (2022). Determinants Of Tax Compliance Intention: A Review Of Non-Economic Factors. International Journal of Industrial Management, 16(1), 7–12. https://doi.org/10.15282/ijim.16.1.2022.9004
Nugraha, R. (2023). Beyond Automation: Unleashing The Future Of Artificial Intelligence In Indonesian Tax Administration. STIAMI Institute, 10, 4–13. https://ojs.stiami.ac.id/index.php/PS/article/view/3444
Nurchoiriyah, A. P., Sofia, E., Djasuli, M., Fitriyah, F., & Amala, K. (2025). Peran Artificial Intelligence Dalam Optimalisasi Pemungutan Pajak Barang Dan Jasa Tertentu. Jurnal Maneksi, 14(2), 365–372. https://doi.org/10.31959/jm.v14i2.2978
Nurferyanto, D., & Takahashi, Y. (2024). Combating tax crimes in Indonesia: tackling the issue head-on. Humanities and Social Sciences Communications, 11(1), 1556. https://doi.org/10.1057/s41599-024-04075-1
Nuryani, N., Mutiara, A. B., Wiryana, I. M., Purnamasari, D., & Putra, S. N. W. (2024). Artificial Intelligence Model for Detecting Tax Evasion Involving Complex Network Schemes. Aptisi Transactions on Technopreneurship (ATT), 6(3), 339–356. https://doi.org/10.34306/att.v6i3.436
OECD. (2025). Governing with Artificial Intelligence. OECD Publishing. https://doi.org/10.1787/795de142-en
Oktaviani, R. M., Wulandari, S., & Sunarto. (2023). Multinational Corporate Tax Avoidance in Indonesia. International Journal of Professional Business Review, 8(2), e01549. https://doi.org/10.26668/businessreview/2023.v8i2.1549
Okunogbe, O., & Pouliquen, V. (2022). Technology, Taxation, and Corruption: Evidence from the Introduction of Electronic Tax Filing. American Economic Journal: Economic Policy, 14(1), 341–372. https://doi.org/10.1257/pol.20200123
Olawale Olowu, Ademilola Olowofela Adeleye, Abraham Okandeji Omokanye, Akintayo Micheal Ajayi, Adebayo Olabode Adepoju, Olayinka Mary Omole, & Ernest C. Chianumba. (2024). AI-driven fraud detection in banking: A systematic review of data science approaches to enhancing cybersecurity. GSC Advanced Research and Reviews, 21(2), 227–237. https://doi.org/10.30574/gscarr.2024.21.2.0418
Owusu, G. M. Y., Bart-Plange, M.-A., Koomson, T. A. A., & Arthur, M. (2022). The effect of personality traits and tax morale on tax evasion intention. Journal of Financial Crime, 29(1), 272–292. https://doi.org/10.1108/JFC-02-2021-0026
Pramesti, R. F., & Emalia, D. (2024). Studi Literatur : Artificial Inteligence Dalam Dunia Perpajakan Di Indonesia. Jurnal Ekonomi Bisnis, Manajemen Dan Akuntansi (JEBMA), 4(3), 1338–1350. https://doi.org/10.47709/jebma.v4i3.4661
Qian, R., & Poniatowski, G. (2025). Estimating Value Added Tax (VAT) and Corporate Income Tax (CIT) Gaps in Indonesia. Washington, DC: World Bank. https://doi.org/10.1596/42959
Raikov, A. (2021). Decreasing Tax Evasion by Artificial Intelligence. IFAC-PapersOnLine, 54(13), 172–177. https://doi.org/10.1016/j.ifacol.2021.10.440
Rakkini, C. D. N., & Sudhanan, G. M. (2024). An Investigation Into To The Use Of Artificial Intelligence In The Indian Tax System. International Journal For Multidisciplinary Research, 6(6). https://doi.org/10.36948/ijfmr.2024.v06i06.29998
Sarstedt, M., Hair, J. F., Nitzl, C., Ringle, C. M., & Howard, M. C. (2020). Beyond a tandem analysis of SEM and PROCESS: Use of PLS-SEM for mediation analyses! International Journal of Market Research, 62(3), 288–299. https://doi.org/10.1177/1470785320915686
Shin, D. (2022). How do people judge the credibility of algorithmic sources? AI & SOCIETY, 37(1), 81–96. https://doi.org/10.1007/s00146-021-01158-4
Tefuttor, C. K., Nsor-Ambala, R., Onumah, R., & Agbeibor, J. (2025). Modeling the determinants of tax compliance behavior in Ghana: a moderated mediation model. Journal of Economic and Administrative Sciences, 1–17. https://doi.org/10.1108/JEAS-11-2024-0479
Vinzi, V. E., & Henseler, J. (2010). Handbook of Partial Least Squares (V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang, Eds.). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-32827-8
Wardani, D. K., & Kusumastuti, A. (2023). The Effect Of Tax Justice And Tax Discrimination On The Intention To Commit Tax Evasion By Prospective Taxpayers. Innovation and Social Science, 743–751. www.news.detik.com
Views:
4
Downloads:
0
Copyright (c) 2026 Julie Ekapuri Widjaja, Sutrisna Latief, Rudy Soegiharto Djojonegoro Hadisutjipto, Yenni Carolina

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.

