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ABSTRACT 

In the article the problem of finding optimal classifications on a finite set is 
investigated. It is shown that the problem of finding an optimal 
classification is generated by a tolerance relation on a finite set. It is also 
reduced to an optimization problem on a set of permutations. It is proposed 
a modification of the mixed jumping frogs to find suboptimal solutions of 
the problem of classification. 
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Introduction. Classification is a powerful scientific method. The classification problem 

arises in almost all areas of knowledge when analyzing research results, when designing and 

forecasting, when assessing and making decisions. Often having a simple formulation, the 

classification problem turns out to be quite complex and ambiguous. Moreover, sometimes when 

trying to classify, interesting paradoxes arise associated with the unification of fundamentally 

different objects into one class. 

The solution to the classification problem, as a rule, includes a significant proportion of 

subjectivity, individual assessments, fuzzy, informal conclusions. Often the priorities of the decision maker 

(DM) influence the solution of this problem. This leads to the construction of fundamentally different 

classifications based on the same primary information. Especially often this situation arises in those areas 

of knowledge in which it is impossible to use numerical estimates in the classification of objects and 

phenomena, due to which there is a need for fuzzy assessments, the use of the concepts “similar”. 

Formulation of the problem. The aim of this work is to construct metaheuristics for finding a 

suboptimal classification defined by a tolerance relation on a finite set. This approach allows one to 

construct partitions close to optimal sets in accordance with the relation of “proximity” of elements. 

Moreover, this relationship of proximity is not transitive. The proposed algorithms can find wide 

application in applied problems related to the problem of object classification by a number of 

attributes. Such problems often arise in the economic, social and technical sciences. 

Solution method and analysis of the results. From the point of view of mathematics, the 

classification problem can be considered from different positions. The main one is the set-theoretic 

approach when constructing a classification. However, in practice, it turns out that this approach is good 

only post factum, that is, for clarifying and formally describing an already constructed classification. 
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The most widespread up to now are statistical classification models, which allow grouping 

objects according to the results of statistical data analysis [1, 2, 3]. Metric algorithms use the 

formalization of the concept of similarity between objects and the hypothesis of compactness [2, 3, 4]. 

There is another principle: the so-called logical classification algorithms. This approach is based on 

the principle of inductive inference of logical laws or induction of rules [5, 6, 7]. Classification models 

are becoming more widespread is they are based on the tools of the fuzzy sets theory. A comparatively 

new direction is classification models based on integral mathematics. An interesting direction is the 

use of artificial intelligence methods for solving classification problems. An overview of existing 

recognition methods is given in the monograph [6]. 

Statement of the classification problem on a finite set 

By a partition of a finite set X we mean a set of its nonempty subsets 
1 2, ,..., nX X X  such that: 

1) 

1

n

i

i

X X
=

= ;  

2) , ,    ,    , 1,2,...,i ji j i j X X i j n   = = .  

The classification problem on a finite set consists in finding a partition that has some given 

properties. A set partition defines the canonical equivalence relation associated with this partition. 

Namely: two elements are considered equivalent if they belong to the same split element. On the other 

hand, it is easy to show that any equivalence relation on a finite set determines its partition into classes 

of elements equivalent to each other. 

Recall that an equivalence relation on a set X is a binary relation " "  with the following properties: 

1) reflexivity:    x X x x  ;  

2) symmetrically ,   x y X x y y x   ;  

3) transitive: , ,   ,x y z X x y y z x z   .  

Let us present a simple algorithm [8], which allows for a given equivalence relation to 

construct the corresponding partition of the set X into classes of equivalent elements. 

Step 0. An arbitrary ordering (numbering) of elements of the set X: is chosen 

1 2, ,..., Nx x x X . Here is | |N X= . A set of representatives of equivalence classes is determined, 

which is empty at the initial stage of the algorithm. The set of equivalence classes is also empty. 

…. 

Step i. The next element x of the ordered sequence of elements of the set X is selected and 

sequentially compared with the set of representatives of already defined equivalence classes. If this 

element is equivalent to a representative of the class Xk, then it is placed in the class Xk. If it is not 

equivalent to any of the elements of the set of representatives of the classes, then the element is 

entered into the set of representatives and defines a new class of equivalence. 

The algorithm ends when all elements have been viewed and categorized. The result of the 

algorithm is a set of representatives of different classes and a set of classes of equivalent elements. 

It follows from the transitivity of the equivalence relation that the set of classes obtained as a result 

of the operation of the algorithm does not depend on the initial ordering of the elements of the set X (Step 

0). Another ordering can only change the sequence of equivalence classes and the set of representatives. 

The above algorithm for finding equivalence classes and a set of representatives will be called linear. 

Let us note one feature of the linear algorithm. It can be applied not only to an equivalence 

relation, but also to any binary relation. However, if the relation is not transitive, then the result of the 

algorithm will already significantly depend on the choice of the initial ordering of the elements. 

The relation of tolerance and classification based on the concept of proximity of elements. 

Most of the existing classifications in applied sciences are not built on the basis of the 

equivalence relation, but on the basis of another binary relation - the tolerance relation. Tolerance 

relation is a reflexive and symmetric relation “ ” on the set X, that is, a relation that is determined by 

the following properties: 

1.   x X x x   ; 

2. ,    x y X x y y x     . 
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A typical example of such a relationship is the relation of approximate equality on a set of 

numbers. In practice, the attitude of tolerance appears in the form of a relationship between objects, 

which is described by the words “similar”, “close”. 

If the tolerance relation “ ” is defined on a finite set X, then we can apply a linear algorithm 

for class allocation and obtain a classification on this set. However, in contrast to the classifications 

that are based on equivalence relations, classification, constructed on the basis of tolerance 

relationship, depends essentially on the choice of the initial ordering of the elements of X. Different 

ways of ordering elements can lead to fundamentally different classifications. 

Optimality criterion for classifications. 

There are many approaches to determining the optimal classification. Informally, a 

classification is optimal if the elements within the classes are “close enough” to each other, and the 

classes themselves are “far enough” from each other. Let's consider one of these approaches. 

A closeness measure on a finite set X is a function :p X X R+ → with the following 

properties: 

1) ,    ( , ) 0x y X p x y    moreover ( , ) 0p x y x y=  = ;  

2) ,    ( , ) ( , )x y X p x y p y x  = .  

In particular, the distance between points in metric space can serve as a measure of proximity. 

Let a positive number be given 0  . We will say that the elements ,x y X are in 

proximity (close to each other), if ( , )p x y  . This ratio is the ratio of tolerance and, as mentioned 

above, gives rise to many different classifications, which are defined by the selected ordering on the 

set X. We will call such classifications -classifications. The linear partitioning algorithm changes 

slightly. Namely: at step i there is a class (among the constructed ones), the representative of which is 

closest to the analyzed element. If the measure of proximity between this representative and the 

element in question is less than or equal to the value, then the element is added to the class. Otherwise, 

the element in question becomes a representative of the new class. 

The distance between two non-empty disjoint subsets is ,A B X defined as a 

function 
,

( , ) min ( , )
x A y B

p A B p x y
 

= . 

Let a linear order " "  of elements on the set X be given, determined by some 

permutation 
ns S . Let us denote the equivalence classes 

1 2, ,..., nX X X  for the  -classification 

generated by this order. As a criterion for optimality of classification, we will choose a function 

, ,
( ) min ( , )i j

i j i j
F s p X X


= . Then the condition for the optimality of the  -classification will be the 

condition 

( ) max
ns S

F s


⎯⎯⎯→  

Such a task is computationally complex [9]. However, the algorithm itself for finding a 

partition by a given order relation has a polynomial complexity. 

Thus, the optimal classification of the search problem is reduced to the problem of finding an 

optimal permutation of the elements of the X. This allows us to propose a number of metaheuristics for 

finding suboptimal solutions to the classification problem [10]. Consider two such metaheuristics, the 

effectiveness of which has been confirmed by a large number of applications. 

Permutation evolutionary algorithm. 

The standard scheme of the evolutionary permutation algorithm is used. Let us briefly describe the 

principle of operation of such an algorithm [10]. The set of all permutations of n elements is chosen as the 

base set of solutions 
n
S . At the initial step, a set of solutions is constructed using the initial population 

operator 
0

.
n

Y S At each next step, it is assumed that a certain set of permutations is given the current 

population. At the first step, this is a set 
0

Y Y . For each of the elements of the set Y, the value of the 

selection criterion is calculated, which in this case is a covering mapping of the original problem. Then, 

using the selection operator in the current population Y, a set of pairs 
1 2( , ,..., )nU u u u=  and 
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1 2( , ,..., )nV v v v=  is selected for crossover operation. A crossover operator ( , )Cross U V  is applied to 

each pair, and then a mutation operator is applied to the result. Permutation – descendant is constructed as 

follows: sequences U and V are scanned from the beginning. At the k -th step, the smallest of the first 

elements of the sequences is selected and added to the new permutation – descendant. This element is then 

removed from the two parent sequences. For instance,  

Cross((2,4,7,6,1,3,5,8),(3,8,1,5,4,2,6,7)) = (2,3,4,7,6,1,3,5,8). 

The mutation operator M performs a random transposition (replacement of two elements) in a 

permutation with a given probability (0,1) . 

In this way many elements are found the descendants of  Y . The evolution operator is 

applied to the intermediate population Y Y , which is the union of the current population and a set 

of descendants, which selects a new current population on this set. The evolution process is repeated 

until the condition for stopping the evolutionary algorithm is satisfied. The solution of the original 

problem is restored from the found permutation. 

Mixed jumping frogs method. 

The algorithm of the method of mixed jumping frogs is simple to understand and implement, 

has a small number of parameters, and has been successfully used to solve combinatorial and 

continuous optimization problems [5,6]. 

The essence of the jumping frog algorithm for finding the optimal permutation is reduced to 

the following sequence of steps. 

Step 1. Initialize the initial frog population as a set of points in the permutation space with 

Kendall's metric 
nS .  

Step 2. Calculate the value of the optimality criterion for each permutation from the initial 

population.  

Step 3. Arrange the solutions in descending order of the optimality criterion value.  

Step 4. Divide virtual frogs (solutions) into memplex blocks in such a way that the first virtual 

frog in the sorted list falls into the first memplex, the second is entered into the second memplex, etc.  

Step 5. Find the best 
1ks  and worst 

2ks  solution in each memplex {1,2,..., }k K . 

Step 6. Try to improve the position of the worst virtual frog by randomly moving it in the 

direction of the best frog 
2 1( , )k ks Cross s s= . 

Step 7. If the previous operation does not improve the solution, then try to improve the 

position of the worst virtual frog by moving it towards the globally better frog 
2 11( , )ks Cross s s= .  

Step 8. If the last operation does not improve the position of the virtual frog, then instead of it, 

randomly create a new frog in the search area – a permutation.  

Step 9. Combine virtual frogs of all memplexes into one group.  

Step 10. If the conditions for the completion of the algorithm are not met, then go to Step 3. 

Step 11. The last globally best virtual frog corresponds to a suboptimal problem solution. 

Let us now describe this algorithm formally, taking into account the parameters. 

The method parameters are as follows: 

1) the number of classes of frogs   ( 2)Q Q  ;  

2) the number of elements r in each class (it is assumed that the sizes of the classes are the 

same and 2r  );  

3) the maximum number of steps K of the algorithm;  

4) the number D of the best frogs in the class, and 0 D r  .  

In accordance with the specified parameters, the size N of the frog population (the set of feasible 

solutions) is determined by the formula N Qr= . In the initial step of the algorithm creates the initial 

population of frogs by generating random permutations 
1 2( , ,.., )j

j j jns i i i= , 1,2,...,j N= . 

The best permutation of the vertices in terms of the goal function is selected, which defines the 

permutation 1 2* ( , ,..., )ns i i i= , and the value of the objective function is calculated ( *)F x  on this 

permutation: 
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Step k (1 k K  ). The set is ordered 
( 1)kP −

 by the value of the objective function, that is 

1( ) ( ), 2,3,..., 1k kF s F s k N− = − . The population 
( 1)kP −

 is divided into Q classes of the same 

cardinality r 

( 1) ( ) ( ){ | , ( 1) , 1,2,.., , 1,2,..., }k qi qi j

qP s s x j q i Q i r q q− = = = + − = = . 

The best solution 
1*s s=  is determined by the value of the objective function for the entire 

population. In each class 
( 1)k

qP −
, the “best” 

( 1)qs  and “worst” 
( )qrs  are determined by the value of 

the objective function of the solution. In each class 
( 1)k

qP −
, the positions (sequences of traversing the 

vertices of the graph) of frogs change with numbers from 1D +  to r. For each value of the index 

{ 1,2,..., }i D r + a new position of the i- th frog (the sequence of traversing the vertices) in the 

class with number q is determined according to the following rule: a random permutation
cs  is 

calculated from the interval between the permutations 
( 1)qs  and 

( )qrs  in the Kendall metric.  

The permutation on the segment between 
( 1)qs  and 

( )qrs  is built according to the rule: 

sequences 
( 1)qs  and 

( )qrs  are viewed from left to right. At the next step, the smallest of the first 

elements of the sequences is selected and added to the new permutation. Then this element is removed 

from the permutations 
( 1)qs  and 

( )qrs . For example, applying this operation to the permutations (2, 

4, 7, 6, 1, 3, 5, 8) and (5, 8, 1, 3, 4, 2, 6, 7) gives the permutation (2, 4, 5, 7, 6, 1, 3, 8).  

If 
( )( ) ( )c qiF s F s , then we assume 

( )qi cs s= . If 
( )( ) ( )c qiF s F s , then a random 

permutation 
cs  is chosen in the segment between 

( )qrs  and *s . If 
( )( ) ( )c qiF s F s then we 

assume 
( )qi cs s= . Otherwise, we choose a randomly generated permutation 

( )qis . 

We assume ( ) ( 1)

1

Q
k k

q

q

P P −

=

=  and go to the next step of the algorithm. 

The algorithm ends when the specified number of steps has been completed. The current 

permutation *s  determined at the last step is taken as the optimal solution to the problem. 

Note that description is, the above algorithm s Resch was the problem of finding the optimal 

permutations of n elements in the set of all permutations with the objective function ( )F s  which is 

defined on the set of permutations. In this case, the specific type of the objective function does not 

matter. Therefore, the above algorithm can be used to find suboptimal solutions to optimization 

problems on a set of permutations with arbitrary objective functions. 

Numerical experiment. The weights of the graph edges were chosen randomly in the 

range [1,100]. These weights were considered as a measure of proximity for the respective vertices. 

The set of vertices of the graph was considered as a set of elements to be classified. A positive number 

was chosen randomly in the interval [0,1]. Linear orders (permutations) on the set of vertices were not 

adjusted using the Fisher-Yates shuffle algorithm [17]. 

The problems were solved using a local search algorithm, a random search method, 

evolutionary algorithms, and the method of mixed jumping frogs. 

The comparison of algorithms was carried out in the following directions: 

Record is the number of problems in a series where the algorithm turned out to be the best 

among the tested. Bord rating is the sum of the number of points scored on each problem in the 

series. For the first place in comparison, 5 points were assigned, for the second 4, for the third 3. 

The results of the algorithm comparison are presented on Table 1.  
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Table 1. Results of applying different approaches. 

Series 

(number of 

vertices) 

Number 

of tasks 

Algorithm 

search loc. 

Random Search Evolutionary 

algorithm 

Jumping frog 

method 

Record Rating Record Rating Record Rating Record Rating 

A 50 100 44 286 88 468 100 500 100 500 

B 100 100 ten 221 0 348 100 500 100 500 

H 500 100 0 212 0 280 94 394 100 500 

D 1000 100 0 118 0 201 92 392 100 500 
 

Conclusions. In this article, a method for finding optimal β-classifications based on two well-

known metaheuristics was considered. A numerical experiment showed good results of the proposed 

algorithms in comparison with local and random search. This approach can be transferred practically 

without changes to other types of classifications, which are based on the concept of proximity of elements. 

In addition to the metaheuristics proposed in the work, any other metaheuristics applicable to 

optimization problems on fragmentary structures can be considered in a similar way [10]. 
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