IS THERE AN ORGAN-SPECIFIC EXPRESSION OF CANDIDATE GENES (DJ1, PINK1) IN TISSUES OF THE ORGANISM UNDER EXPERIMENTAL PARKINSONISM AND ITS PATHOGENETIC THERAPY?
Abstract
It have been studied the changes in the structural and functional state of mitochondria and expression of PINK1 and DJ1 genes in brain tissue - medulla oblongata and striatum and lung and heart tissue in experimental parkinsonism and its pathogenetic treatment with the help of a broad-spectrum antihypoxant Kapikor. It was shown that undrt experimental parkinsonism, in addition to damage to the ultrastructure of the mitochondrial apparatus in cells of body tissues, there are significant changes in mRNA expression of DJ1 and PINK1 genes, which are associated with the formation of mitochondrial dysfunction. They have a multidirectional character in the tissues of the brain - decrease, and in the tissues of the heart and lungs - increase. The degree of such changes in expression is organ-specific and more pronounced in the tissues of the visceral organs than in the tissues of the brain. Also, it was shown that the use of broad-spectrum antioxidant, which contains mildenium dehydrate and gamma-butyrobetaine dihydrate, there are significant changes in the expression of mRNA genes DJ1 and PINK1, which are also organ-specific - the expression of mRNA of all DJ1 genes increased in to a greater extent, the expression of PINK1 gene mRNA decreased sharply in brain tissues, and also increased sharply in lung and heart tissues. The data obtained indicate a complex and ambiguous relationship between the level of expression of the studied candidate genes involved in the formation of experimental parkinsonism, and the severity of mitochondrial dysfunction, which is one of the pathogenetic causes of parkinsonism.
References
Петрищев, Н.Н., Власов, Т.Д. (2003). Физиология и патофизиология эндотелия. Дисфункция эндотелия. СПб: СПбГМУ, 4—38. [Интернет]. Retrieved from: https://doi.org/10.24884/1682-6655-2017-16-1-4-15
Lesage, S., Brice, A. (2009). Parkinson's disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet, 18 (1), 48-59. doi: 10.1093/hmg/ddp012
Rub, C., Wilkening, A., Voos, W. (2017)/ Mitochondrial quality control by the Pink1. Parkin system. Cell Tissue Res, 367 (1), 111-123. doi: 10.1007/s00441-016-2485-8.
Truban, D., Hou, X., Caulfield, T.R., et al. (2017) PINK1, Parkin, and mitochondrial quality control: what can we learn about Parkinson's disease pathobiology? J Parkinsons Dis, 7 (1), 13-29. doi: 10.3233/JPD-160989.
Canet-Aviles, R.M., Wilson, M.A., Miller, D.W., et al. (2004). The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic aciddriven mitochondrial localization. Proc Natl Acad Sci U S A, 101 (24), 9103-9108. doi: 10.1073/pnas.0402959101
Gao, J., Wang, L., Liu. J., et al. (2017). Abnormalities of Mitochondrial Dynamics Diseases in Neuroses. Antioxidants (Basel) [Internet] Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5488005/
Burbulla, L.F., Song, P., Mazzulli, J.R., et al. (2017). Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science, 357 (6357), 1255-1261. doi: 10.1126/science.aam9080.
Patten, D.A., Wong, J., Khacho, M., et al. (2014). OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J, 33 (22), 2676-2691. doi: 10.15252/embj.201488349
Левин, О.С., Докадина, Л.В. (2005). Эпидемиология паркинсонизма и болезни Паркінсона. Неврологический журнал, (5), 41–90.
Малиновская Н.А., Гасымлы Э.Д., Баглаева О.В., Базарова А.С., Пищиков О.В. (2012). Экспериментальные ротеноновые модели болезни Паркинсона на крысах. – Modern problems and ways of their solunions in scienct, transport, production and rducation. [Internet] Retrieved from: https://www.sworld.com.ua/konfer29/1114.pdf
Карупу, В.Я. (1984) Электронная микроскопия. Киев: Вища школа, 208.
Уикли Б. (1975). Электронная микроскопия для начинающих. – Москва: Мир, 326.
Вейбель Э.Р. (1970). Морфометрия легких человека. Москва: Медицина, 170.
Ташке К. (1980). Введение в количественную цито-гистологическую морфологию. Бухарест: Изд-во Академии СРР, 192.
Dave, K.D., De Silva, S., Sheth, N.P., et al. (2014). Phenotypic characterization of recessive gene knockout rat models of Parkinson's disease. Neurobiology of Disease, 70 (1), 190–203. doi: 10.1016/j.nbd.2014.06.009
Michael, R.R., Melkonyan, B.H., Thanos, S. (2015). Life-time expression of the proteins peroxiredoxin, beta-synuclein, PARK7 / DJ-1, and stathmin in the primary visual and primary somatosensory cortices in rats. Frontiers in Neuroanatomy. 9 (1), 190-203. doi: 10.3389/fnana.2015.00016
Rezai1, M., Mahmoodi, M., Kaeidi, A., et al. (2018). Effect of crocin carotenoid on BDNF and CREB gene expression in brain ventral tegmental area of morphine treated rats. Asian Pacific Journal of Tropical Biomedicine. 8 (8), 387-393. doi: 10.4103/2221-1691.239426
Осипов. В.П., Лукьянова, Е.М., Антипкин, Ю.Г. и др. (2002). Методика статистической обработки медицинской информации в научных исследованиях. Киев: Планета людей, 200.
Views:
226
Downloads:
169
Copyright (c) 2021 Rozova Kateryna Vsevolodovna, Putiy Yuliya Vladimirovna
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles are published in open-access and licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Hence, authors retain copyright to the content of the articles.
CC BY 4.0 License allows content to be copied, adapted, displayed, distributed, re-published or otherwise re-used for any purpose including for adaptation and commercial use provided the content is attributed.