APPLICATION EFFICIENCY OF BIFIDOBACTERIUM BIFIDUM 1 AND LACTOBACILLUS REUTERI DSM 17938 CELL-FREE EXTRACTS IN VIVO

  • Knysh Oksana Senior researcher, Mechnikov Institute of Microbiology and Immunology of the National Academy of Medical Sciences of Ukraine, laboratory of respiratory infections prevention, Ukraine, Kharkiv https://orcid.org/0000-0002-4105-1299
  • Pogorila Marina Senior researcher, Mechnikov Institute of Microbiology and Immunology of the National Academy of Medical Sciences of Ukraine, laboratory and clinical department of molecular immunopharmacology, Ukraine, Kharkiv https://orcid.org/0000-0002-1783-9772
  • Polianska Valentina Assistant Professor, Ukrainian Medical Stomatological Academy, microbiology, virology and immunology department, Ukraine, Poltava https://orcid.org/0000-0002-8727-9029
  • Zachepylo Svitlana Assistant Professor, Ukrainian Medical Stomatological Academy, otorhinolaryngology with ophthalmology department, Ukraine, Poltava https://orcid.org/0000-0002-2194-0611
Keywords: probiotic cell-free extracts, Bifidobacterium bifidum 1, Lactobacillus reuteri DSM 17938, antibiotic-induced dysbiosis, murine model of intestinal staphylococcal infection

Abstract

Insufficient efficiency and safety of cellular probiotics encourages the search for new effective means of correction of microecological disorders. Most of the beneficial effects of probiotics are due to the biological activity of their structural components and metabolites. Recently, great hope is pinned on postbiotic products as a means of restoring the balance of intestinal microbial populations. The data obtained in this experimental study demonstrate the ability of cell-free extracts from Bifidobacterium bifidum 1 and Lactobacillus reuteri DSM 17938 cultures, cultivated in their own disintegrates supplemented with ascorbic acid, to provide anti-infection protection and correct microecological disturbances at modeling an infectious process against a background of antibiotic-induced dysbiosis in mice. The beneficial effects of cell-free extracts showed up in the acceleration of the pathogen elimination and an increase in the number of representatives of the positive intestinal microbiota. The results of the study justify the need for further clinical trials to determine the therapeutic efficacy of cell-free extracts when included in the protocols of dysbiosis treatment.

References

Дуда, О. К., Бойко, В. О., Коцюбайло, Л. П., & Голуб, А. П. (2017). Дисбиоз кишечника и его коррекция в практике врача-инфекциониста. Семейная медицина, 3 (71), 32-36. doi:10.30841/2307-5112.3(71).2017.115931

Thursby, E., & Juge, N. (2017). Introduction to the human gut microbiota. Biochemical Journal, 474(11), 1823–1836. doi:10.1042/bcj20160510

Walker, W. A. (2017). Dysbiosis. The microbiota in gastrointestinal pathophysiology, 227–232. doi:10.1016/b978-0-12-804024-9.00025-2

Becattini, S., Taur, Y., & Pamer, E. G. (2016). Antibiotic-induced changes in the intestinal microbiota and disease. Trends in Molecular Medicine, 22(6), 458–478. doi:10.1016/j.molmed.2016.04.003

De Kraker, M. E. A., Stewardson, A. J., & Harbarth, S. (2016). Will 10 million people die a year due to antimicrobial resistance by 2050? PLOS Medicine, 13(11), e1002184. doi:10.1371/journal.pmed.1002184

Iacob, S., & Iacob, D. G. (2019). Infectious threats, the intestinal barrier, and its Trojan Horse: dysbiosis. Frontiers in Microbiology, 10. doi:10.3389/fmicb.2019.01676

Wilkins, L. J., Monga, M., & Miller, A. W. (2019). Defining dysbiosis for a cluster of chronic diseases. Scientific Reports, 9(1). doi:10.1038/s41598-019-49452-y

Shenderov, B. A. (2013). Metabiotics: novel idea or natural development of probiotic conception. Microbial Ecology in Health & Disease, 24(0). doi:10.3402/mehd.v24i0.20399

Singh, A., Vishwakarma, V., & Singhal, B. (2018). Metabiotics: the functional metabolic signatures of probiotics: current state-of-art and future research priorities—metabiotics: probiotics effector molecules. Advances in Bioscience and Biotechnology, 09(04), 147–189. doi:10.4236/abb.2018.94012

Richards, J. L., Yap, Y. A., McLeod, K. H., Mackay, C. R., & Mariño, E. (2016). Dietary metabolites and the gut microbiota: An alternative approach to control inflammatory and autoimmune diseases. Clinical and Translational Immunology, 5(5), e82.

Gagliardi, A., Totino, V., Cacciotti, F., Iebba, V., Neroni, B., Bonfiglio, G., Trancassini, M., Passariello, C., Pantanella, F, & Schippa, S. (2018). Rebuilding the gut microbiota ecosystem. International Journal of Environmental Research and Public Health, 15(8), 1679.

Knysh, O. V., & Martynov, A. V. (2020). Potentiation of the antimicrobial effect of Lactobacillus reuteri DSM 17938 cell-free extracts by ascorbic acid. Medicni perspektivi, 25(1), 17-24. doi: 10.26641/2307-0404.2020.1.200393

Knysh, O. V., Pogorila, M. S., & Voyda, Y. V. (2020). In vitro immunomodulatory effect of Bifidobacterium bifidum and Lactobacillus reuteri cell free extracts. Regulatory Mechanisms in Biosystems, 11(1), 93–97. doi:10.15421/022013

Knysh, O. V. (2019). Bifidogenic properties of cell-free extracts derived from probiotic strains of Bifidobacterium bifidum and Lactobacillus reuteri. Regulatory Mechanisms in Biosystems, 10(1), 124–128. doi:10.15421/021919

Knysh, O. V. (2019). The effects of cell-free extracts derived from probiotic strains Bifidobacterium bifidum and Lactobacillus reuteri on the proliferation and biofilm formation by Lactobacillus reuteri in vitro. Zaporozhye Medical Journal, 0(6). doi:10.14739/2310-1210.2019.6.186711

Резніков, О. Г., Соловйов, А. I., Добреля, Н. В., & Стефанов, О. В. (2006). Біоетична експертиза доклінічних та інших наукових досліджень, що виконуються на тваринах: метод. рекомендації. Вісник фармакології та фармації, (7), 47-61.

Дармов, И. В., Чичерин, И. Ю., Ердякова, А. С., Лундовских, И. А., & Погорельский, И. П. Способ моделирования дисбактериоза кишечника у лабораторных животных. Патент № 2477894. Российская Федерация, опубл. 20.03. 2013. Бюл, (8).

Larcombe, S., Jiang, J.-H., Hutton, M. L., Abud, H. E., Peleg, A. Y., & Lyras, D. (2020). A mouse model of Staphylococcus aureus small intestinal infection. Journal of Medical Microbiology, 69(2), 290–297. doi:10.1099/jmm.0.001163

Piqué, N., Berlanga, M., & Miñana-Galbis, D. (2019). Health benefits of heat-killed (tyndallized) probiotics: An overview. International Journal of Molecular Sciences, 20(10), 2534. doi:10.3390/ijms20102534

Lopetuso, L., Graziani, C., Guarino, A., Lamborghini, A., Masi, S., & Stanghellini, V. (2017). Gelatin tannate and tyndallized probiotics: a novel approach for treatment of diarrhea. Eur Rev Med Pharmacol Sci, 21(4), 873-883.

Taverniti, V., & Guglielmetti, S. (2011). The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes & Nutrition, 6(3), 261–274. doi:10.1007/s12263-011-0218-x

Canducci F., Armuzzi A., Cremonini F., Cammarota G., Bartolozzi F., Pola P., Gasbarrini G., Gasbarrini A. (2000). A lyophilized and inactivated culture of Lactobacillus acidophilus increases Helicobacter pylori eradication rates. Alimentary Pharmacology and Therapeutics, 14(12), 1625–1629. doi:10.1046/j.1365-2036.2000.00885.x

Views:

253

Downloads:

225

Published
2020-06-30
Citations
How to Cite
Knysh Oksana, Pogorila Marina, Polianska Valentina, & Zachepylo Svitlana. (2020). APPLICATION EFFICIENCY OF BIFIDOBACTERIUM BIFIDUM 1 AND LACTOBACILLUS REUTERI DSM 17938 CELL-FREE EXTRACTS IN VIVO. Science Review, (5(32), 9-15. https://doi.org/10.31435/rsglobal_sr/30062020/7137
Section
Medicine